The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retri...The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.展开更多
Complex multi-tier applications deployed in cloud computing environments can experience rapid changes in their workloads. To ensure market readiness of such applications, adequate resources need to be provisioned so t...Complex multi-tier applications deployed in cloud computing environments can experience rapid changes in their workloads. To ensure market readiness of such applications, adequate resources need to be provisioned so that the applications can meet the demands of specified workload levels and at the same time ensure that service level agreements are met. Multi-tier cloud applications can have complex deployment configurations with load balancers, web servers, application servers and database servers. Complex dependencies may exist between servers in various tiers. To support provisioning and capacity planning decisions, performance testing approaches with synthetic workloads are used. Accuracy of a performance testing approach is determined by how closely the generated synthetic workloads mimic the realistic workloads. Since multi-tier applications can have varied deployment configurations and characteristic workloads, there is a need for a generic performance testing methodology that allows accurately modeling the performance of applications. We propose a methodology for performance testing of complex multi-tier applications. The workloads of multi-tier cloud applications are captured in two different models-benchmark application and workload models. An architecture model captures the deployment configurations of multi-tier applications. We propose a rapid deployment prototyping methodology that can help in choosing the best and most cost effective deployments for multi-tier applications that meet the specified performance requirements. We also describe a system bottleneck detection approach based on experimental evaluation of multi-tier applications.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.661403234)Shandong Provincial Science and Techhnology Development Plan of China(Grant No.2014GGX106009)
文摘The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.
文摘Complex multi-tier applications deployed in cloud computing environments can experience rapid changes in their workloads. To ensure market readiness of such applications, adequate resources need to be provisioned so that the applications can meet the demands of specified workload levels and at the same time ensure that service level agreements are met. Multi-tier cloud applications can have complex deployment configurations with load balancers, web servers, application servers and database servers. Complex dependencies may exist between servers in various tiers. To support provisioning and capacity planning decisions, performance testing approaches with synthetic workloads are used. Accuracy of a performance testing approach is determined by how closely the generated synthetic workloads mimic the realistic workloads. Since multi-tier applications can have varied deployment configurations and characteristic workloads, there is a need for a generic performance testing methodology that allows accurately modeling the performance of applications. We propose a methodology for performance testing of complex multi-tier applications. The workloads of multi-tier cloud applications are captured in two different models-benchmark application and workload models. An architecture model captures the deployment configurations of multi-tier applications. We propose a rapid deployment prototyping methodology that can help in choosing the best and most cost effective deployments for multi-tier applications that meet the specified performance requirements. We also describe a system bottleneck detection approach based on experimental evaluation of multi-tier applications.