Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c...Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.展开更多
In this paper, a multi label variant of CLUBAS [1] algorithm, ML-CLUBAS (Multi Label-Classification of software Bugs Using Bug Attribute Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using...In this paper, a multi label variant of CLUBAS [1] algorithm, ML-CLUBAS (Multi Label-Classification of software Bugs Using Bug Attribute Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clustering, frequent term calculations and taxonomic terms mapping techniques, and is an example of classification using clustering technique. CLUBAS is a single label algorithm, where one bug cluster is exactly mapped to a single bug category. However a bug cluster can be mapped into the more than one bug category in case of cluster label matches with the more than one category term, for this purpose ML-CLUBAS a multi label variant of CLUBAS is presented in this work. The designed algorithm is evaluated using the performance parameters F-measures and accuracy, number of clusters and purity. These parameters are compared with the CLUBAS and other multi label text clustering algorithms.展开更多
基金Supported by the National Natural Science Foundation of China(No.61602191,61672521,61375037,61473291,61572501,61572536,61502491,61372107,61401167)the Natural Science Foundation of Fujian Province(No.2016J01308)+3 种基金the Scientific and Technology Funds of Quanzhou(No.2015Z114)the Scientific and Technology Funds of Xiamen(No.3502Z20173045)the Promotion Program for Young and Middle aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-PY418,ZQN-YX403)the Scientific Research Funds of Huaqiao University(No.16BS108)
文摘Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.
文摘In this paper, a multi label variant of CLUBAS [1] algorithm, ML-CLUBAS (Multi Label-Classification of software Bugs Using Bug Attribute Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clustering, frequent term calculations and taxonomic terms mapping techniques, and is an example of classification using clustering technique. CLUBAS is a single label algorithm, where one bug cluster is exactly mapped to a single bug category. However a bug cluster can be mapped into the more than one bug category in case of cluster label matches with the more than one category term, for this purpose ML-CLUBAS a multi label variant of CLUBAS is presented in this work. The designed algorithm is evaluated using the performance parameters F-measures and accuracy, number of clusters and purity. These parameters are compared with the CLUBAS and other multi label text clustering algorithms.