As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been ...High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been adopted to monitor the displacement of key components in each direction in real time,these monitoring systems are usually based on their own coordinate system.Data from such systems are meaningful when evaluating and examining the data from each positioning monitoring system in a unified coordinate system.This paper presents the design and construction of a multi-sensor position monitoring system(MPMS).A hydrostatic levelling system,a wire position sensor(WPS) and a tiltmeter are fixed to a stainless steel plate that has been calibrated by a coordinate-measurement machine.Several plates form the MPMS.The system must compensate for the sag of the stretched wires so that the WPSs create a straight line.The method of the coordinate transformation from the sensor coordinate system to the MPMS coordinate system was thoroughly studied.An experimental MPMS that includes five plates was setup in a 20-m tunnel,and a validation study to verify fully the feasibility of the MPMS was performed.展开更多
Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough corr...Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective.展开更多
There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-cha...There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.展开更多
Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path r...Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path routing protocol based on the credible cluster heads. The protocol chooses nodes with more energy remained as cluster heads at the cluster head choosing phase, and then authenticates them by the neighbor cluster heads. Using trust mechanisms it creates the credit value, and based on the credit value the multi-path cluster head routing can finally be found. The credit value is created and exchanged among the cluster heads only. Theoretical analysis combined with simulation results demonstrate that this protocol can save the resource, prolong the lifetime, and ensure the security and performance of the network.展开更多
For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sens...For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.展开更多
Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement i...Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.展开更多
Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergon...Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
基金supported by the National Natural Science Foundation of China(No.11275192)the upgrade project of Hefei Light Source
文摘High-accuracy position monitoring of key components is required for modern synchrotron sources,such as free-electron lasers and diffraction-limited storage rings.Although various position monitoring sensors have been adopted to monitor the displacement of key components in each direction in real time,these monitoring systems are usually based on their own coordinate system.Data from such systems are meaningful when evaluating and examining the data from each positioning monitoring system in a unified coordinate system.This paper presents the design and construction of a multi-sensor position monitoring system(MPMS).A hydrostatic levelling system,a wire position sensor(WPS) and a tiltmeter are fixed to a stainless steel plate that has been calibrated by a coordinate-measurement machine.Several plates form the MPMS.The system must compensate for the sag of the stretched wires so that the WPSs create a straight line.The method of the coordinate transformation from the sensor coordinate system to the MPMS coordinate system was thoroughly studied.An experimental MPMS that includes five plates was setup in a 20-m tunnel,and a validation study to verify fully the feasibility of the MPMS was performed.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金This project was supported by the National Natural Science Foundation of China (60672139, 60672140)the Excellent Ph.D. Paper Author Foundation of China (200237)the Natural Science Foundation of Shandong (2005ZX01).
文摘Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective.
基金The Open Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA under contract No.LMEB201701
文摘There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.
文摘Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path routing protocol based on the credible cluster heads. The protocol chooses nodes with more energy remained as cluster heads at the cluster head choosing phase, and then authenticates them by the neighbor cluster heads. Using trust mechanisms it creates the credit value, and based on the credit value the multi-path cluster head routing can finally be found. The credit value is created and exchanged among the cluster heads only. Theoretical analysis combined with simulation results demonstrate that this protocol can save the resource, prolong the lifetime, and ensure the security and performance of the network.
文摘For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.
基金The Hong Kong Polytechnic University through the group project "Fundamentals of Earthquake Engineering for Hong Kong"(4-ZZCD)the collaborative research project with Beijing University of Technology(4-ZZGD)
文摘Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.
文摘Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.