Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i...Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.展开更多
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structu...This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.展开更多
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var...Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.展开更多
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient alg...A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.展开更多
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro...After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.展开更多
随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensembl...随着电力现货市场的开展,短期电价预测对于各市场主体的决策有着重要意义,而高比例清洁能源与储能的不断接入给短期电价预测带来很大挑战。提出一种基于最大信息系数法(maximum information coefficient,MIC)、集成经验模态分解(ensemble empirical mode decomposition,EEMD)和改进Informer的短期电价多步预测模型。首先,采用MIC分析出与电价相关性较高的几类因素作为模型原始输入序列;然后,将上述原始序列进行EEMD分解后得到多条本征模函数(intrinsic mode function,IMF)和一个残余项后输入改进Informer分别得到翌日24点多步预测结果,再对预测结果进行滤波;最后,将滤波后序列的预测结果叠加得到最终的预测值。以西班牙电力市场数据进行验证,实验结果证明该模型可以有效提高电力市场短期电价多步预测精度。展开更多
文摘Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.
基金Project supported by the State Key Program of National Natural Science of China (Grant No 30230350)the Natural Science Foundation of Guangdong Province,China (Grant No 07006474)
文摘This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.
文摘Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.
基金Supported by National Natural Science Foundation of China (60504026, 60674041) and National High Technology Research and Development Program of China (863 Program)(2006AA04Z173).
基金This work was supported by the National Natural Science Foundation of China (No. 60174021, No. 60374037)the Science and Technology Greativeness Foundation of Nankai University
文摘A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
基金This project was supported by the National Natural Science Foundation of China(60174021)Natural Science Foundation Key Project of Tianjin(013800711).
文摘After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.