Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’...Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing.展开更多
This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,mul...This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard.展开更多
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately...With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines.展开更多
自动驾驶车辆在行驶过程中,需要对行人和车辆同时完成目标检测、实例分割和目标跟踪三个任务。提出一种基于深度学习的环境感知模型同时对三个任务进行多任务学习。首先,通过卷积神经网络对连续帧图像提取时空特征;然后,通过注意力机制...自动驾驶车辆在行驶过程中,需要对行人和车辆同时完成目标检测、实例分割和目标跟踪三个任务。提出一种基于深度学习的环境感知模型同时对三个任务进行多任务学习。首先,通过卷积神经网络对连续帧图像提取时空特征;然后,通过注意力机制对时空特征进行去耦再融合,充分利用任务间的相关性,实现不同任务对时空特征的差异化选择;最后,为平衡不同任务间的学习速率,使用动态加权平均的方式对模型进行训练。在KITTI数据集上的实验结果表明,所提模型在目标检测方面,比CenterTrack模型F1得分提高了0.6个百分点;在目标跟踪方面,比TraDeS(Track to Detect and Segment)模型多目标跟踪精度(MOTA)提高了0.7个百分点;在实例分割方面,比SOLOv2(Segmenting Objects by LOcations version 2)模型AP_(50)和AP_(75)分别提高了7.4和3.9个百分点。展开更多
光场图像作为一种能够捕获场景每个位置光线信息的图像类型,在电子成像、医学影像和虚拟现实等领域具有广泛的应用前景.光场图像质量评估(Light Field Image Quality Assessment,LFIQA)旨在衡量此类图像的质量,但当前方法面临视觉效果...光场图像作为一种能够捕获场景每个位置光线信息的图像类型,在电子成像、医学影像和虚拟现实等领域具有广泛的应用前景.光场图像质量评估(Light Field Image Quality Assessment,LFIQA)旨在衡量此类图像的质量,但当前方法面临视觉效果与文本模态间异构性的重要挑战.为解决上述问题,本文提出了一种基于文本-视觉的多模态光场图像质量评估模型.具体来说,在视觉模态方面,我们设计了多任务模型,结合边缘自动阈值算法有效丰富了光场图像的关键表示特征.在文本模态方面,基于输入噪声特征与预测噪声特征的对比,准确识别光场图像的噪声类别,并验证了噪声预测对优化视觉表示的重要性.基于上述研究,进一步提出了一种优化的通用噪声文本配置方法,并结合边缘增强策略,显著提升了基线模型在光场图像质量评估中的准确性和泛化能力.此外,通过消融实验,评估了各组件对整体模型性能的贡献,验证了本文方法的有效性和稳健性.实验结果表明,该方法不仅在公开数据集Win5-LID和NBU-LF1.0的实验中表现出色,还在融合数据集中展示出优秀的实验结果,与现有最优算法相比,本文所提方法在两个数据库中的性能分别提升了2%和6%.本文提出的噪声验证策略和配置方法不仅为图像质量评估中的噪声预测任务提供了有价值的参考,也可用于其它噪声预测类型的辅助任务.展开更多
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ...This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA.展开更多
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy sup...Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.展开更多
Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one....Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively.展开更多
文摘Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing.
基金Sponsored by the Ministry of Industry and Information Technology of China(Grant No.MIIT[2019]359)。
文摘This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard.
文摘With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines.
文摘自动驾驶车辆在行驶过程中,需要对行人和车辆同时完成目标检测、实例分割和目标跟踪三个任务。提出一种基于深度学习的环境感知模型同时对三个任务进行多任务学习。首先,通过卷积神经网络对连续帧图像提取时空特征;然后,通过注意力机制对时空特征进行去耦再融合,充分利用任务间的相关性,实现不同任务对时空特征的差异化选择;最后,为平衡不同任务间的学习速率,使用动态加权平均的方式对模型进行训练。在KITTI数据集上的实验结果表明,所提模型在目标检测方面,比CenterTrack模型F1得分提高了0.6个百分点;在目标跟踪方面,比TraDeS(Track to Detect and Segment)模型多目标跟踪精度(MOTA)提高了0.7个百分点;在实例分割方面,比SOLOv2(Segmenting Objects by LOcations version 2)模型AP_(50)和AP_(75)分别提高了7.4和3.9个百分点。
文摘光场图像作为一种能够捕获场景每个位置光线信息的图像类型,在电子成像、医学影像和虚拟现实等领域具有广泛的应用前景.光场图像质量评估(Light Field Image Quality Assessment,LFIQA)旨在衡量此类图像的质量,但当前方法面临视觉效果与文本模态间异构性的重要挑战.为解决上述问题,本文提出了一种基于文本-视觉的多模态光场图像质量评估模型.具体来说,在视觉模态方面,我们设计了多任务模型,结合边缘自动阈值算法有效丰富了光场图像的关键表示特征.在文本模态方面,基于输入噪声特征与预测噪声特征的对比,准确识别光场图像的噪声类别,并验证了噪声预测对优化视觉表示的重要性.基于上述研究,进一步提出了一种优化的通用噪声文本配置方法,并结合边缘增强策略,显著提升了基线模型在光场图像质量评估中的准确性和泛化能力.此外,通过消融实验,评估了各组件对整体模型性能的贡献,验证了本文方法的有效性和稳健性.实验结果表明,该方法不仅在公开数据集Win5-LID和NBU-LF1.0的实验中表现出色,还在融合数据集中展示出优秀的实验结果,与现有最优算法相比,本文所提方法在两个数据库中的性能分别提升了2%和6%.本文提出的噪声验证策略和配置方法不仅为图像质量评估中的噪声预测任务提供了有价值的参考,也可用于其它噪声预测类型的辅助任务.
基金Supported by National Natural Science Foundation of China(60474035),National Research Foundation for the Doctoral Program of Higher Education of China(20050359004),Natural Science Foundation of Anhui Province(070412035)
基金Manuscript received March 5, 2010 accepted March 2, 2011 Supported by National Natural Science Foundation of China (61004103), National Research Foundation for the Doctoral Program of Higher Education of China (20100111110005), China Postdoctoral Science Foundation (20090460742), and Natural Science Foundation of Anhui Province of China (090412058, 11040606Q44)
基金supported by ZTE Corporation and State Key Laboratory of Mobile Network and Mobile Multimedia Technology
文摘This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2015AA015403)the National Natural Science Foundation of China(61404069,61401185)the Project of Education Department of Liaoning Province(LJYL052)
文摘Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.
基金supported by National Key R&D Program of China(-NO.2017YFC0803700)National Nature Science Foundation of China(No.U1736206)+6 种基金National Nature Science Foundation of China(61671336)National Nature Science Foundation of China(61671332)Technology Research Program of Ministry of Public Security(No.2016JSYJA12)Hubei Province Technological Innovation Major Project(-No.2016AAA015)Hubei Province Technological Innovation Major Projec(2017AAA123)National Key Research and Development Program of China(No.2016YFB0100901)Nature Science Foundation of Jiangsu Province(No.BK20160386)
文摘Pedestrian attributes recognition is a very important problem in video surveillance and video forensics. Traditional methods assume the pedestrian attributes are independent and design handcraft features for each one. In this paper, we propose a joint hierarchical multi-task learning algorithm to learn the relationships among attributes for better recognizing the pedestrian attributes in still images using convolutional neural networks(CNN). We divide the attributes into local and global ones according to spatial and semantic relations, and then consider learning semantic attributes through a hierarchical multi-task CNN model where each CNN in the first layer will predict each group of such local attributes and CNN in the second layer will predict the global attributes. Our multi-task learning framework allows each CNN model to simultaneously share visual knowledge among different groups of attribute categories. Extensive experiments are conducted on two popular and challenging benchmarks in surveillance scenarios, namely, the PETA and RAP pedestrian attributes datasets. On both benchmarks, our framework achieves superior results over the state-of-theart methods by 88.2% on PETA and 83.25% on RAP, respectively.