The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly mono...The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
基金the Natural Science Foundation of Yibin University of China(No.2007-Z003)
文摘The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space.Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in Korpelevich(Ekonomika i Matematicheskie Metody,1976,12(4):747-756),but also extend and replenish the corresponding results obtained by Iiduka and Takahashi(Nonlinear Anal TMA,2005,61(3):341-350),Takahashi and Toyoda(J Optim Theory Appl,2003, 118(2):417-428),Nadezhkina and Takahashi(J Optim Theory Appl,2006,128(1):191- 201),and Zeng and Yao(Taiwan Residents Journal of Mathematics,2006,10(5):1293-1303).
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
基金Education Committee project Research Foundation of Chongqing (Grant No.030801)the Science Committee project Research Foundation of Chongqing(GrantNo.8409)