An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packe...An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.展开更多
One of the major issues with multi-carrier systems is their vulnerability to timing synchronization errors resulting in the loss of time synchronization which causes loss of orientation of incoming data at the receive...One of the major issues with multi-carrier systems is their vulnerability to timing synchronization errors resulting in the loss of time synchronization which causes loss of orientation of incoming data at the receiver. This paper presents an acquisition algorithm to timing recovery using the decision-aided extended Kalman filtering (EKF) technique for nonlinear disturbance channels in a wavelet packet transform-based multicarrier modulation communication system. This timing recovery algorithm gives faster convergence, smaller root mean square (RMS) errors, and better bit error rate (BER) performance than traditional timing recovery methods, such as the phase-locked loop (PLL), maximum likelihood (ML), and Kalman filter (KF) methods. Thus, the algorithm is able to handle larger timing errors more reliably and to provide better timing recovery, since the scheme takes into account the nonlinear relationship between the signal samples and timing errors. Simulations for various time-varying channels show that the timing recovery algorithm works well for wavelet packet transform-based multicarrier modulation communication systems.展开更多
文摘An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.
基金Supported by the Tianjin Natural Science Foundation in China (No.043600611)the Science and Technique Fostering Foundation of Tianjin in China (No. 043102911)
文摘One of the major issues with multi-carrier systems is their vulnerability to timing synchronization errors resulting in the loss of time synchronization which causes loss of orientation of incoming data at the receiver. This paper presents an acquisition algorithm to timing recovery using the decision-aided extended Kalman filtering (EKF) technique for nonlinear disturbance channels in a wavelet packet transform-based multicarrier modulation communication system. This timing recovery algorithm gives faster convergence, smaller root mean square (RMS) errors, and better bit error rate (BER) performance than traditional timing recovery methods, such as the phase-locked loop (PLL), maximum likelihood (ML), and Kalman filter (KF) methods. Thus, the algorithm is able to handle larger timing errors more reliably and to provide better timing recovery, since the scheme takes into account the nonlinear relationship between the signal samples and timing errors. Simulations for various time-varying channels show that the timing recovery algorithm works well for wavelet packet transform-based multicarrier modulation communication systems.