Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years...Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years have the characteristics of infinite degrees of freedom,high flexibility,environmental adaptability,and extended manipulation capability.However,these existing manipulators still cannot achieve the shrinking motion and independent control of specified segments like the animals,which hinders their applications.In this paper,a flexible bio-tensegrity manipulator,inspired by the longitudinal and transversal muscles of octopus tentacles,was proposed to mimic the shrinking behavior and achieve the variable motion patterns of each segment.Such proposed manipulator uses the elastic spring as the backbone,which is driven by four cables and has one variable structure mechanism in each segment to achieve the independent control of each segment.The variable structure mechanism innovatively contains seven lock-release states to independently control the bending and shrinking motion of each segment.After the kinematic modeling and analysis,one prototype of such bionic flexible manipulator was built and the open-loop control method was proposed.Some proof-of-concept experiments,including the shrinking motion,bending motion,and variable structure motion,were carried out by controlling the length of four cables and changing the lock-release states of the variable structure mechanism,which validate the feasibility and validity of our proposed prototype.Meanwhile,the experimental results show the flexible manipulator can accomplish the bending and shrinking motion with the relative error less than 6.8%through the simple independent control of each segment using the variable structure mechanism.This proposed manipulator has the features of controllable degree-of-freedom in each segment,which extend their environmental adaptability,and manipulation capability.展开更多
A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were c...A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise ...Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined.展开更多
This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can r...This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can realize six⁃degree⁃of⁃freedom movement in space,but the working space is limited.After the three⁃axis turntable is installed,the rotation space can be increased to simulate more realistic flight conditions.This paper analyzes the new flight simulator from kinematics and dynamics aspects.In addition,the flight simulator is simulated and analyzed based on the MATLAB/Simulink simulation system.The results obtained from the numerical simulations is planned to be used for the practical manufacturing and applications of the new platform.展开更多
场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedo...场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51705066,51805128)Sichuan Science and Technology Program(Grant No.2019YFG0343)Fundamental Research Funds for the Central Universities of China(Grant Nos.ZYGX2019J041,ZYGX2016KYQD137).
文摘Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years have the characteristics of infinite degrees of freedom,high flexibility,environmental adaptability,and extended manipulation capability.However,these existing manipulators still cannot achieve the shrinking motion and independent control of specified segments like the animals,which hinders their applications.In this paper,a flexible bio-tensegrity manipulator,inspired by the longitudinal and transversal muscles of octopus tentacles,was proposed to mimic the shrinking behavior and achieve the variable motion patterns of each segment.Such proposed manipulator uses the elastic spring as the backbone,which is driven by four cables and has one variable structure mechanism in each segment to achieve the independent control of each segment.The variable structure mechanism innovatively contains seven lock-release states to independently control the bending and shrinking motion of each segment.After the kinematic modeling and analysis,one prototype of such bionic flexible manipulator was built and the open-loop control method was proposed.Some proof-of-concept experiments,including the shrinking motion,bending motion,and variable structure motion,were carried out by controlling the length of four cables and changing the lock-release states of the variable structure mechanism,which validate the feasibility and validity of our proposed prototype.Meanwhile,the experimental results show the flexible manipulator can accomplish the bending and shrinking motion with the relative error less than 6.8%through the simple independent control of each segment using the variable structure mechanism.This proposed manipulator has the features of controllable degree-of-freedom in each segment,which extend their environmental adaptability,and manipulation capability.
基金Project(51221462)supported by the National Natural Science Foundation of China for Innovative Research GroupProject(20120095110001)supported by the Doctoral Fund of Ministry of Education of China+1 种基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,ChinaProject(CXJJ201303)supported by the Innovation Foundation of Xuyi Research and Development Center of Mining Equipment and Materials,China University of Mining and Technology,China
文摘A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
基金Project supported by the National Natural Science Foundation of China(Nos.11702170,11320011,and 11802279)the China Postdoctoral Science Foundation(No.2016M601585)
文摘Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined.
文摘This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can realize six⁃degree⁃of⁃freedom movement in space,but the working space is limited.After the three⁃axis turntable is installed,the rotation space can be increased to simulate more realistic flight conditions.This paper analyzes the new flight simulator from kinematics and dynamics aspects.In addition,the flight simulator is simulated and analyzed based on the MATLAB/Simulink simulation system.The results obtained from the numerical simulations is planned to be used for the practical manufacturing and applications of the new platform.
文摘场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。