Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during...Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.展开更多
Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing ...Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa.展开更多
基金financially supported by the National Excellent Young Scientists Fund(NO.51525503)
文摘Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.
文摘Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa.