Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derive...The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derived.The analytic formulae and numerical computing results of seismic response PSD have been derived to study the mechanism of multi-support excitation effects,such as the wave-passage effect and incoherence effect,for the seismic response of multiand large-span structures.By using a multi-span truss as an example,the influence of multi-support excitation effects on the seismic response of such structures is studied.展开更多
The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map...The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.展开更多
目前常见的提升圆筒型浮式生产储装置(Floating production storage and offloading vessels,FPSO)垂荡性能的方法是通过增加刚度使垂荡固有周期增大到20 s以上,远离常见波浪周期,但这使得垂荡固有周期与纵摇固有周期的比值接近1∶2,可...目前常见的提升圆筒型浮式生产储装置(Floating production storage and offloading vessels,FPSO)垂荡性能的方法是通过增加刚度使垂荡固有周期增大到20 s以上,远离常见波浪周期,但这使得垂荡固有周期与纵摇固有周期的比值接近1∶2,可能会导致参数激励现象的发生。因此本文针对此类圆筒型FPSO系统的参数激励非线性运动展开研究。考虑规则波建立了系统单自由度参数激励纵摇方程,本文中采用多尺度法求解运动方程的一次近似解析解,基于Lyapunov定理分析解的稳定性,以分析规则参数激励下圆筒型FPSO纵摇失稳的机理。最后,结合多尺度法与数值方法进行参数敏感性分析。结果表明,使参数激励周期与纵摇固有周期的比值远离1/2、降低参数激励幅值和增大纵摇阻尼的3种方式均能够有效避免大幅参数激励的发生。展开更多
针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy po...针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy power spectral density,EPSD)矩阵,采用绝对位移法对桥梁进行非线性时程分析。考虑不同视波速、场地条件、相干性以及平稳与非平稳地震激励,综合分析了曲线连续梁桥的随机响应及其频域特性和时域特性。结果表明,地震动空间效应和地震动的非平稳性对曲线梁桥随机响应影响很大,其中地震动空间效应对桥梁随机响应大小及其频域分布有显著影响,而非平稳性会对随机响应大小及其时变响应趋势产生重要影响。因此,在曲线连续梁桥抗震分析中需充分考虑地震动空间效应和地震动非平稳性,以避免错误估计桥梁抗震性能。提供了全面的分析结果,对加强曲线连续梁桥的抗震设计和评估,从而提高其抗震性能和可靠性具有重要意义。展开更多
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金National Natural Science Foundation of China under Grant No.51038006Specializes Research Fund for the Doctoral Program of Higher Education under Grant No.20090002110045
文摘The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derived.The analytic formulae and numerical computing results of seismic response PSD have been derived to study the mechanism of multi-support excitation effects,such as the wave-passage effect and incoherence effect,for the seismic response of multiand large-span structures.By using a multi-span truss as an example,the influence of multi-support excitation effects on the seismic response of such structures is studied.
文摘The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.
文摘目前常见的提升圆筒型浮式生产储装置(Floating production storage and offloading vessels,FPSO)垂荡性能的方法是通过增加刚度使垂荡固有周期增大到20 s以上,远离常见波浪周期,但这使得垂荡固有周期与纵摇固有周期的比值接近1∶2,可能会导致参数激励现象的发生。因此本文针对此类圆筒型FPSO系统的参数激励非线性运动展开研究。考虑规则波建立了系统单自由度参数激励纵摇方程,本文中采用多尺度法求解运动方程的一次近似解析解,基于Lyapunov定理分析解的稳定性,以分析规则参数激励下圆筒型FPSO纵摇失稳的机理。最后,结合多尺度法与数值方法进行参数敏感性分析。结果表明,使参数激励周期与纵摇固有周期的比值远离1/2、降低参数激励幅值和增大纵摇阻尼的3种方式均能够有效避免大幅参数激励的发生。
文摘针对当前地震动空间效应下曲线梁桥地震反应分析多采用确定性激励输入且忽略桥梁非线性的情况,采用了多维多点非平稳随机激励对曲线连续梁桥进行弹塑性响应分析。建立非线性有限元模型并降维解耦非平稳地震动非平稳演化功率谱(energy power spectral density,EPSD)矩阵,采用绝对位移法对桥梁进行非线性时程分析。考虑不同视波速、场地条件、相干性以及平稳与非平稳地震激励,综合分析了曲线连续梁桥的随机响应及其频域特性和时域特性。结果表明,地震动空间效应和地震动的非平稳性对曲线梁桥随机响应影响很大,其中地震动空间效应对桥梁随机响应大小及其频域分布有显著影响,而非平稳性会对随机响应大小及其时变响应趋势产生重要影响。因此,在曲线连续梁桥抗震分析中需充分考虑地震动空间效应和地震动非平稳性,以避免错误估计桥梁抗震性能。提供了全面的分析结果,对加强曲线连续梁桥的抗震设计和评估,从而提高其抗震性能和可靠性具有重要意义。