In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limita...In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.展开更多
The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this...The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.展开更多
In order to realize the efficiency, reliability and safety tests on the complex cable network of an electronic system, an efficient cable network resistance tester is designed. Firstly, the design background and hardw...In order to realize the efficiency, reliability and safety tests on the complex cable network of an electronic system, an efficient cable network resistance tester is designed. Firstly, the design background and hardware structure are briefly described. Then aiming at the multi task parallelism considering real time measurement of parameters and real time control of the system in the tester testing, a real time muhi task control software is developed by using multi thread testing technology in parallel test to realize multi task complex control. Finally, the least squares method is used to improve the test accuracyof the tester. The test results show that the test error is basically within 0.3%, and the test speed can reach 345 point/min.展开更多
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary re...The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations (ODEs) of the system and their modulation equations, respectively. Frequency- and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted. The analysis shows that the two results have a slight difference;however, they both have sufficient accuracy to solve the proposed dynamic system.展开更多
Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging st...Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state.展开更多
To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological ...To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological conditions. This paper is based on the splitting and merging of 7_1 coal and 7_2 coal in Huaibei Mining(Group) Co., Ltd., and analyzes properties of the roof andcoal in the 7_2 coal of the lower coal seam of bifurcation area, and calculates the damage depth of the floor in the process of 7_1 coal mining. The multi-point displacement meter installation is often challenged by hole collapse, stuck pole and broken installation rod in 7_2 coal of the soft coal seam of bifurcation area, as a result, the base points can't be installed in the specified location. In view of this, this paper adopts a new anchor cable mounting rod which can install the whole base points to the specified location without stuck pole or broken mounting stem. All the basic displacement data can be obtained, and the law of mine pressure appearance in stope and tunnel can be accurately controlled, which can be used to maintain the stability of roadway and the safety of stope.展开更多
Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years...Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years have the characteristics of infinite degrees of freedom,high flexibility,environmental adaptability,and extended manipulation capability.However,these existing manipulators still cannot achieve the shrinking motion and independent control of specified segments like the animals,which hinders their applications.In this paper,a flexible bio-tensegrity manipulator,inspired by the longitudinal and transversal muscles of octopus tentacles,was proposed to mimic the shrinking behavior and achieve the variable motion patterns of each segment.Such proposed manipulator uses the elastic spring as the backbone,which is driven by four cables and has one variable structure mechanism in each segment to achieve the independent control of each segment.The variable structure mechanism innovatively contains seven lock-release states to independently control the bending and shrinking motion of each segment.After the kinematic modeling and analysis,one prototype of such bionic flexible manipulator was built and the open-loop control method was proposed.Some proof-of-concept experiments,including the shrinking motion,bending motion,and variable structure motion,were carried out by controlling the length of four cables and changing the lock-release states of the variable structure mechanism,which validate the feasibility and validity of our proposed prototype.Meanwhile,the experimental results show the flexible manipulator can accomplish the bending and shrinking motion with the relative error less than 6.8%through the simple independent control of each segment using the variable structure mechanism.This proposed manipulator has the features of controllable degree-of-freedom in each segment,which extend their environmental adaptability,and manipulation capability.展开更多
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m...For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.展开更多
基金Area Strategic Development Program inStructural Control and Intelligent Building from The HongKong Polytechnic University, and National Natural SciencFoundation of China Under Grant No. 50408011
文摘In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.
基金Area Strategic Development Program in Structural Control and Intelligent Building from The Hong Kong Polytechnic UniversityNational Natural Science Foundation of China Under Grant No. 50408011
文摘The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model significantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the M SPMD to mitigate the vibration of the bridge tower.
文摘In order to realize the efficiency, reliability and safety tests on the complex cable network of an electronic system, an efficient cable network resistance tester is designed. Firstly, the design background and hardware structure are briefly described. Then aiming at the multi task parallelism considering real time measurement of parameters and real time control of the system in the tester testing, a real time muhi task control software is developed by using multi thread testing technology in parallel test to realize multi task complex control. Finally, the least squares method is used to improve the test accuracyof the tester. The test results show that the test error is basically within 0.3%, and the test speed can reach 345 point/min.
基金Project supported by the National Natural Science Foundation of China(Nos.11572117,11502076,and 11872176)
文摘The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations (ODEs) of the system and their modulation equations, respectively. Frequency- and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted. The analysis shows that the two results have a slight difference;however, they both have sufficient accuracy to solve the proposed dynamic system.
基金Project supported by National Natural Science Foundation of China(51277117), Shang- hai Science and Technology Comrmssion(11 DZ2283000).
文摘Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state.
基金Sponsored by National Natural Science Fund of China(51474005)
文摘To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological conditions. This paper is based on the splitting and merging of 7_1 coal and 7_2 coal in Huaibei Mining(Group) Co., Ltd., and analyzes properties of the roof andcoal in the 7_2 coal of the lower coal seam of bifurcation area, and calculates the damage depth of the floor in the process of 7_1 coal mining. The multi-point displacement meter installation is often challenged by hole collapse, stuck pole and broken installation rod in 7_2 coal of the soft coal seam of bifurcation area, as a result, the base points can't be installed in the specified location. In view of this, this paper adopts a new anchor cable mounting rod which can install the whole base points to the specified location without stuck pole or broken mounting stem. All the basic displacement data can be obtained, and the law of mine pressure appearance in stope and tunnel can be accurately controlled, which can be used to maintain the stability of roadway and the safety of stope.
基金Supported by National Natural Science Foundation of China(Grant Nos.51705066,51805128)Sichuan Science and Technology Program(Grant No.2019YFG0343)Fundamental Research Funds for the Central Universities of China(Grant Nos.ZYGX2019J041,ZYGX2016KYQD137).
文摘Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years have the characteristics of infinite degrees of freedom,high flexibility,environmental adaptability,and extended manipulation capability.However,these existing manipulators still cannot achieve the shrinking motion and independent control of specified segments like the animals,which hinders their applications.In this paper,a flexible bio-tensegrity manipulator,inspired by the longitudinal and transversal muscles of octopus tentacles,was proposed to mimic the shrinking behavior and achieve the variable motion patterns of each segment.Such proposed manipulator uses the elastic spring as the backbone,which is driven by four cables and has one variable structure mechanism in each segment to achieve the independent control of each segment.The variable structure mechanism innovatively contains seven lock-release states to independently control the bending and shrinking motion of each segment.After the kinematic modeling and analysis,one prototype of such bionic flexible manipulator was built and the open-loop control method was proposed.Some proof-of-concept experiments,including the shrinking motion,bending motion,and variable structure motion,were carried out by controlling the length of four cables and changing the lock-release states of the variable structure mechanism,which validate the feasibility and validity of our proposed prototype.Meanwhile,the experimental results show the flexible manipulator can accomplish the bending and shrinking motion with the relative error less than 6.8%through the simple independent control of each segment using the variable structure mechanism.This proposed manipulator has the features of controllable degree-of-freedom in each segment,which extend their environmental adaptability,and manipulation capability.
文摘For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.