Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description...Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description—minimum description length, this paper discusses a case: where there is multi-collinearity in the coefficient matrix, principal component estimation is used to estimate and select the original parameters, so as to reduce its multi-collinearity and improve its credibility. From the viewpoint of minimum description length, this paper discusses the approach of selecting principal components and uses this approach to solve a practical problem.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
基金Project(40074001) supported by National Natural Science Foundation of China Project (SD2003 -10) supported by the Open ResearchFund Programof the Key Laboratory of Geomatics and Digital Technilogy ,Shandong Province
文摘Gauss-Markov model is frequently used in data analysis; the analysis and estimation of its parameters is always a hot issue. Based on the information theory and from the viewpoint of optimal information on description—minimum description length, this paper discusses a case: where there is multi-collinearity in the coefficient matrix, principal component estimation is used to estimate and select the original parameters, so as to reduce its multi-collinearity and improve its credibility. From the viewpoint of minimum description length, this paper discusses the approach of selecting principal components and uses this approach to solve a practical problem.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.