为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复...为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。展开更多
高速移动环境会导致信道的双弥散效应,给无线通信系统带来巨大挑战。正交时频空间(orthogonal time frequency space,OTFS)调制通过将时-频域的双弥散信道转换为时延-多普勒域的平坦衰落信道,能够有效缓解双弥散信道带来的频率和时间选...高速移动环境会导致信道的双弥散效应,给无线通信系统带来巨大挑战。正交时频空间(orthogonal time frequency space,OTFS)调制通过将时-频域的双弥散信道转换为时延-多普勒域的平坦衰落信道,能够有效缓解双弥散信道带来的频率和时间选择性衰落的影响。针对多用户大规模多输入多输出(multiinput multi-output,MIMO)OTFS系统中的信道参数估计问题,通过对多天线信道结构特征进行深入分析,将用户与基站间的信道建模为稀疏结构模型。将大规模MIMO信道划分为多个群组,设计了适用于多用户大规模MIMO-OTFS系统的导频图案,提出了基于群组块共稀疏阈值结构化贝叶斯学习信道估计算法。利用估计得到的信道状态信息设计了分数多普勒频移、到达角度等信道参数估计方法,从而进一步感知用户状态。仿真结果表明,提出的信道参数估计算法具有更高的估计精度和系统频谱效率。展开更多
文摘为了改善基于卷积编解码架构的单通道语音增强网络对语音声学特征提取不充分、解码特征丢失严重的问题,提出一种基于多路信息聚合协同解码的单通道语音增强网络MIACD,通过双路编码器充分提取融入了语音自监督学习(SSL)表征的幅度谱和复数谱特征,由4层Conformer分别从时间和频率维度对提取特征建模,采用残差连接将双路编码器提取的语音幅度、复数特征引入三路信息聚合解码器,并利用所提通道-时频注意力(CTF-Attention)机制根据语音能量分布情况调节解码器中聚合信息,有效缓解解码时可用声学信息缺失严重的问题。在公开数据集Voice Bank DEMAND上的实验结果表明,与用于单通道语音增强的协作学习框架(GaGNet)相比,MIACD在客观评价指标宽带感知评估语音质量(WB-PESQ)上提升了5.1%,短时客观可懂度(STOI)达到96.7%,验证所提方法可充分利用语音信息重构信号,有效抑制噪声并提升语音可理解性。
文摘高速移动环境会导致信道的双弥散效应,给无线通信系统带来巨大挑战。正交时频空间(orthogonal time frequency space,OTFS)调制通过将时-频域的双弥散信道转换为时延-多普勒域的平坦衰落信道,能够有效缓解双弥散信道带来的频率和时间选择性衰落的影响。针对多用户大规模多输入多输出(multiinput multi-output,MIMO)OTFS系统中的信道参数估计问题,通过对多天线信道结构特征进行深入分析,将用户与基站间的信道建模为稀疏结构模型。将大规模MIMO信道划分为多个群组,设计了适用于多用户大规模MIMO-OTFS系统的导频图案,提出了基于群组块共稀疏阈值结构化贝叶斯学习信道估计算法。利用估计得到的信道状态信息设计了分数多普勒频移、到达角度等信道参数估计方法,从而进一步感知用户状态。仿真结果表明,提出的信道参数估计算法具有更高的估计精度和系统频谱效率。