Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (ML...Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.展开更多
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ...In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.展开更多
This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two...This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.展开更多
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope...Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.展开更多
Very high frequency(VHF) photocathode guns have excellent performance and are being increasingly selected as electron sources for high-repetition-rate X-ray free-electron lasers. As a highly loaded quality factor cavi...Very high frequency(VHF) photocathode guns have excellent performance and are being increasingly selected as electron sources for high-repetition-rate X-ray free-electron lasers. As a highly loaded quality factor cavity, the VHF gun requires high stability in the amplitude and phase of the cavity field. However, the gun is microwave powered by two solid-state power sources through two separate power couplers. The input difference between the two power couplers will influence the stability of the cavity field. To systematically study this influence and obtain measurement formulae, a multi-port VHF gun LCR circuit model is built and analyzed. During the warm-up condition, the cavity structure will be deformed due to the large-scale change in the cavity temperature. Then, the deformation will result in cavity resonant frequency changes. To prevent the mechanic tuner from suffering damages due to the frequent and long-distance movement for correcting the cavity resonant frequency, a self-excited loop(SEL) control system is considered for changing the loop phase and make the loop frequency follow the resonant frequency. In this study, a steady-state model of the VHF gun cavity is built for obtaining the optimal input coupler coefficient and the stability requirement of the forward voltage. Then, the generator-driven resonator and SEL control system, which combine with the VHF multiport modeling, are modeled and simulated. The simulated results show that the SEL system can perfectly operate in the process of condition and warm-up.展开更多
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli...This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.展开更多
Underwater vehicles are being emphasized as highly integrated and intelligent devices for a significant number of oceanic operations. However, their precise operation is usually hindered by disturbances from a tether ...Underwater vehicles are being emphasized as highly integrated and intelligent devices for a significant number of oceanic operations. However, their precise operation is usually hindered by disturbances from a tether or manipulator because their propellers are unable to realize a stable suspension. A dynamic multi-body model-based adaptive controller was designed to allow the controller of the vehicle to observe and compensate for disturbances from a tether or manipulator. Disturbances, including those from a tether or manipulator, are deduced for the observation of the controller. An analysis of a tether disturbance covers the conditions of the surface, the underwater area, and the vehicle end point. Interactions between the vehicle and manipulator are mainly composed of coupling forces and restoring moments.To verify the robustness of the controller, path-following experiments on a streamlined autonomous underwater vehicle experiencing various disturbances were conducted in Song Hua Lake in China. Furthermore,path-following experiments for a tethered open frame remote operated vehicle were verified for accurate cruising with a controller and an observer, and vehicle and manipulator coordinate motion control during the simulation and experiments verified the effectiveness of the controller and observer for underwater operation. This study provides instructions for the control of an underwater vehicle experiencing disturbances from a tether or manipulator.展开更多
Based on the framework of Colpitts oscillator, a four-dimensional multi-scroll hyperchaotic system is proposed, which generates (2M+1)×(2N+1)-scroll chaotic and hyperchaotic attractors. The key strategy is to inc...Based on the framework of Colpitts oscillator, a four-dimensional multi-scroll hyperchaotic system is proposed, which generates (2M+1)×(2N+1)-scroll chaotic and hyperchaotic attractors. The key strategy is to increase the number of index-2 equilibrium points by introducing two unit saw-tooth functions to extend and modify the Colpitts oscillator model. By using bifurcation diagram and phase portrait, the dynamical characteristics of the multi-scroll hyperchaotic system are briefly studied. Moreover, micro-controller based circuit realization is introduced and the experimental results dem-onstrate that 7×5-scroll chaotic and hyperchaotic attractors can be obtained in the digital circuit.展开更多
This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control th...This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control theory in dealing with severe nonlinear and time variant systems is thoroughly solved. In fact, this theory could appropriately be improved to a perfect approach for handling all complex systems, provided that they are firstly taken into consideration in line with the outcomes presented. This control scheme is organized based on a multi-fuzzy-based predictive control approach as well as a multi-fuzzy-based predictive model approach, while an intelligent decision mechanism system (IDMS) is used to identify the best fuzzy-based predictive model approach and the corresponding fuzzy-based predictive control approach, at each instant of time. In order to demonstrate the validity of the proposed control scheme, the single linear model based generalized predictive control scheme is used as a benchmark approach. At last, the appropriate tracking performance of the proposed control scheme is easily outperformed in comparison with previous one.展开更多
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
文摘Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.
基金the 973 Program of China (No.2002CB312200)the National Science Foundation of China (No.60574019)
文摘In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.
基金Supported by National Natural Science Foundation of China (60504026, 60674041) and National High Technology Research and Development Program of China (863 Program)(2006AA04Z173).
文摘This paper introduces a multi-model approach to design a robust supplementary damping controller. The designed fixed-order supplementary damping controller adjusts the voltage reference set point of SVC. There are two main objectives of the controller design, damping low frequencies oscillations and enhancing power system stability. This method relies on shaping the closed-loop sensitivity functions in the Nyquist plot under the constraints of these functions. These constraints can be linearized by choosing a desired open-loop transfer function. The robust controller is designed to minimize the error between the open-loop of the original plant model and the desired transfer functions. These outcomes can be achieved by using convex optimization methods. Convexity of the problem formulation ensures global optimality. One of the advantages of the proposed approach is that the approach accounts for multi-model uncertainty. In contrast to the methods available in the literature, the proposed approach deals with full-order model (i.e., model reduction is not required) with lower controller order. The issue of time delay of feedback signals has been addressed in this paper for different values of time delay by applying a multi-model optimization technique. The proposed approach is compared to other existing techniques to design a robust controller which is based on H2 under pole placement. Both techniques are applied to the 68-bus system to evaluate and validate the robust controller performance under different load scenarios and different wind generations.
基金Science Council in Chinese Taipei Under Grant No.NSC 94-2211-E-035-015
文摘Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.
基金Supported by National Natural Science Foundation of China (61164013, U1334211, 51174091), the Key Program of China Ministry of Railway (2011Z002-D), and Natural Science Foundation of Jiangxi Province (20122BAB201021)
文摘Very high frequency(VHF) photocathode guns have excellent performance and are being increasingly selected as electron sources for high-repetition-rate X-ray free-electron lasers. As a highly loaded quality factor cavity, the VHF gun requires high stability in the amplitude and phase of the cavity field. However, the gun is microwave powered by two solid-state power sources through two separate power couplers. The input difference between the two power couplers will influence the stability of the cavity field. To systematically study this influence and obtain measurement formulae, a multi-port VHF gun LCR circuit model is built and analyzed. During the warm-up condition, the cavity structure will be deformed due to the large-scale change in the cavity temperature. Then, the deformation will result in cavity resonant frequency changes. To prevent the mechanic tuner from suffering damages due to the frequent and long-distance movement for correcting the cavity resonant frequency, a self-excited loop(SEL) control system is considered for changing the loop phase and make the loop frequency follow the resonant frequency. In this study, a steady-state model of the VHF gun cavity is built for obtaining the optimal input coupler coefficient and the stability requirement of the forward voltage. Then, the generator-driven resonator and SEL control system, which combine with the VHF multiport modeling, are modeled and simulated. The simulated results show that the SEL system can perfectly operate in the process of condition and warm-up.
基金Supported by the National Natural Science Foundation of China(No.11172197 and No.11332008)a key-project grant from the Natural Science Foundation of Tianjin(No.010413595)
文摘This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.
基金Supported by National Natural Science Foundation of China(Grant Nos.5129050,51579053,61633009)Major National Science and Technology Project of China(Grant No.2015ZX01041101)Key Basic Research Project of "Shanghai Science and Technology Innovation Plan" of China (Grant No.15JC1403300)
文摘Underwater vehicles are being emphasized as highly integrated and intelligent devices for a significant number of oceanic operations. However, their precise operation is usually hindered by disturbances from a tether or manipulator because their propellers are unable to realize a stable suspension. A dynamic multi-body model-based adaptive controller was designed to allow the controller of the vehicle to observe and compensate for disturbances from a tether or manipulator. Disturbances, including those from a tether or manipulator, are deduced for the observation of the controller. An analysis of a tether disturbance covers the conditions of the surface, the underwater area, and the vehicle end point. Interactions between the vehicle and manipulator are mainly composed of coupling forces and restoring moments.To verify the robustness of the controller, path-following experiments on a streamlined autonomous underwater vehicle experiencing various disturbances were conducted in Song Hua Lake in China. Furthermore,path-following experiments for a tethered open frame remote operated vehicle were verified for accurate cruising with a controller and an observer, and vehicle and manipulator coordinate motion control during the simulation and experiments verified the effectiveness of the controller and observer for underwater operation. This study provides instructions for the control of an underwater vehicle experiencing disturbances from a tether or manipulator.
基金Supported by the Natural Science Foundations of Jiangsu Province (No. BK2009105)
文摘Based on the framework of Colpitts oscillator, a four-dimensional multi-scroll hyperchaotic system is proposed, which generates (2M+1)×(2N+1)-scroll chaotic and hyperchaotic attractors. The key strategy is to increase the number of index-2 equilibrium points by introducing two unit saw-tooth functions to extend and modify the Colpitts oscillator model. By using bifurcation diagram and phase portrait, the dynamical characteristics of the multi-scroll hyperchaotic system are briefly studied. Moreover, micro-controller based circuit realization is introduced and the experimental results dem-onstrate that 7×5-scroll chaotic and hyperchaotic attractors can be obtained in the digital circuit.
文摘This paper describes a new approach to intelligent model based predictive control scheme for deriving a complex system. In the control scheme presented, the main problem of the linear model based predictive control theory in dealing with severe nonlinear and time variant systems is thoroughly solved. In fact, this theory could appropriately be improved to a perfect approach for handling all complex systems, provided that they are firstly taken into consideration in line with the outcomes presented. This control scheme is organized based on a multi-fuzzy-based predictive control approach as well as a multi-fuzzy-based predictive model approach, while an intelligent decision mechanism system (IDMS) is used to identify the best fuzzy-based predictive model approach and the corresponding fuzzy-based predictive control approach, at each instant of time. In order to demonstrate the validity of the proposed control scheme, the single linear model based generalized predictive control scheme is used as a benchmark approach. At last, the appropriate tracking performance of the proposed control scheme is easily outperformed in comparison with previous one.
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."