In order to solve the problem that existing non- linear suspension models have not considered chaotic motion in primary and other resonances, and numerical calculation model is too simplified to capture the accurate c...In order to solve the problem that existing non- linear suspension models have not considered chaotic motion in primary and other resonances, and numerical calculation model is too simplified to capture the accurate critical conditions for the chaotic motion, a nonlinear suspension model and its new paths of chaos are investi- gated. Primary resonances, secondary resonances, and combined resonances are performed using multiple-time scales method. Based on the Melnikov functions, the crit- ical conditions for the chaotic motion of the nonlinear system are found, which is 0.246 7 for the primary reso- nance, and 0.338 8 for the secondary resonance. The effects of parameters on chaotic range are considered, and results show that nonlinear stiffness of suspension k2 has the lar- gest impact on the chaotic range while damping coefficient C+ has the smallest one. The chaotic responses on the area of the primary and secondary resonances are discussed via Lyapunov exponents and numerical integration of the equations of motion. It is found from Lyapunov exponents and Poincare maps that motions are chaos over critical conditions, and has shown two very different paths of chaos on the primary and secondary resonances. Chaotic motion patterns in the primary and secondary resonances are obtained with more accurate critical conditions, whichis a necessary complement to nonlinear study in nonlinear suspension mode.展开更多
In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equ...In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equal 10 C.C.S.). Usually, the C.C.S. will increase with time and the weight will decrease. The main purpose of this research is to find the optimal harvest time to maximize revenue and minimize gathering cost. The mathematical model is first formulated under the regulations of the Office of the Cane and Sugar Board (OCSB). The -constraints method is then applied to solve the multi-objective mathematical model. The optimal harvest times in the four regions of Thailand (Northern, Central, Eastern, North-Eastern) for crop years 2012/ 13, 2013/14 and 2014/15 are obtained for comparison.展开更多
This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h ...This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
We demonstrate a possibility of computation of inelastic scattering cross-section in a multi-peripheral model by application of the Laplace method to multidimensional integral over the domain of physical process. Foun...We demonstrate a possibility of computation of inelastic scattering cross-section in a multi-peripheral model by application of the Laplace method to multidimensional integral over the domain of physical process. Founded the constrained maximum point of scattering cross-section integral under condition of the energy-momentum conservation. The integrand is substituted for an expression of Gaussian type in the neighborhood of this point. It made possible to compute this integral numerically. The paper has two parts. The hunting procedure of the constrained maximum point is considered and the properties of this maximum point are discussed in the given part of the paper. It is shown that virtuality of all internal lines of the “comb” diagram reduced at the constrained maximum point with energy growth. In the second part of the paper we give some the arguments in favor of consideration of the mechanism of virtuality reduction as the mechanism of the total hadron scattering cross-section growth, which is not taken into account within the framework of Regge theory.展开更多
We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application of the Laplace' method replace the integrand in the integral for the scattering amplitude in th...We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application of the Laplace' method replace the integrand in the integral for the scattering amplitude in the vicinity of the maximum point by expression of Gaussian type. This, in turn, allows us to overcome the computational difficulties for the calculation of the integrals expressing the cross section to sufficiently large numbers of particles. We have managed to overcome these problems in calculating the proton-proton inelastic cross-section for production (n ≤ 8) number of secondary particles in within the framework of φ3 model. As the result the obtained dependence of inelastic cross-section and total scattering cross-section on the energy √s are qualitative agrees with the experimental data. Such description of total cross-section behavior differs considerably from existing now description, where reggeons exchange with the intercept greater than unity is considered.展开更多
We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact...We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact, particles in thi</span>s framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach to interparticle (macroscopic) potential function which is presented by the analytical equation with terms of exponent of inter-particle distance, like a Lennard-Jones potential usually used in molecular dynamics simulation. Equation of motion for these macroscopic particles has dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we are able to carry out uniaxial loading simulation of aluminum rod. The method can also reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to try to include plasticity in this multi-scale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading and this new and simple framework of materials modeling has been confirmed to have certain effectiveness to be used in materials simulations. We also assess the effect of the order of loadings in opposite directions including yield and plastic states and find that an irreversible behavior depends on different response of the particle system between tensile and compressive loadings.展开更多
为解决多基站定位模型中基站之间同步代价高的问题,提出了一种基于多根长馈线天线基站的到达时间差(Time Difference of Arrival,TDOA)定位模型,给出了模型方程和求解方法,该方法将复杂的3对距离差方程组转化为1个一元八次方程,然后采用...为解决多基站定位模型中基站之间同步代价高的问题,提出了一种基于多根长馈线天线基站的到达时间差(Time Difference of Arrival,TDOA)定位模型,给出了模型方程和求解方法,该方法将复杂的3对距离差方程组转化为1个一元八次方程,然后采用Aberth-Newton迭代法来迭代求解方程。通过计算机仿真验证了基于多根长馈线天线基站的TDOA定位模型和解法的有效性,并对该模型的多解问题进行了分析,用优化基站布局的方案,解决了定位模型的唯一解问题。本定位模型在覆盖范围数百米时,定位精度可达分米级。展开更多
The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the anal...The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,51575240)Jiangsu Provincial Natural Science Foundation of China(Grant Nos.BK20131255,BK20160533)Research and Innovation Project for College Graduates of Jiangsu Province of China(Grant No.CXZZ12_0663)
文摘In order to solve the problem that existing non- linear suspension models have not considered chaotic motion in primary and other resonances, and numerical calculation model is too simplified to capture the accurate critical conditions for the chaotic motion, a nonlinear suspension model and its new paths of chaos are investi- gated. Primary resonances, secondary resonances, and combined resonances are performed using multiple-time scales method. Based on the Melnikov functions, the crit- ical conditions for the chaotic motion of the nonlinear system are found, which is 0.246 7 for the primary reso- nance, and 0.338 8 for the secondary resonance. The effects of parameters on chaotic range are considered, and results show that nonlinear stiffness of suspension k2 has the lar- gest impact on the chaotic range while damping coefficient C+ has the smallest one. The chaotic responses on the area of the primary and secondary resonances are discussed via Lyapunov exponents and numerical integration of the equations of motion. It is found from Lyapunov exponents and Poincare maps that motions are chaos over critical conditions, and has shown two very different paths of chaos on the primary and secondary resonances. Chaotic motion patterns in the primary and secondary resonances are obtained with more accurate critical conditions, whichis a necessary complement to nonlinear study in nonlinear suspension mode.
文摘In this paper, the sugarcane and sugar industry in Thailand is studied. The government determines the sugarcane prices which is based on the two main factors: 1) weight and 2) commercial cane sugar (standard value equal 10 C.C.S.). Usually, the C.C.S. will increase with time and the weight will decrease. The main purpose of this research is to find the optimal harvest time to maximize revenue and minimize gathering cost. The mathematical model is first formulated under the regulations of the Office of the Cane and Sugar Board (OCSB). The -constraints method is then applied to solve the multi-objective mathematical model. The optimal harvest times in the four regions of Thailand (Northern, Central, Eastern, North-Eastern) for crop years 2012/ 13, 2013/14 and 2014/15 are obtained for comparison.
基金supported by the National Natural Science Foundation of China(7117111370901041)
文摘This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
文摘We demonstrate a possibility of computation of inelastic scattering cross-section in a multi-peripheral model by application of the Laplace method to multidimensional integral over the domain of physical process. Founded the constrained maximum point of scattering cross-section integral under condition of the energy-momentum conservation. The integrand is substituted for an expression of Gaussian type in the neighborhood of this point. It made possible to compute this integral numerically. The paper has two parts. The hunting procedure of the constrained maximum point is considered and the properties of this maximum point are discussed in the given part of the paper. It is shown that virtuality of all internal lines of the “comb” diagram reduced at the constrained maximum point with energy growth. In the second part of the paper we give some the arguments in favor of consideration of the mechanism of virtuality reduction as the mechanism of the total hadron scattering cross-section growth, which is not taken into account within the framework of Regge theory.
文摘We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application of the Laplace' method replace the integrand in the integral for the scattering amplitude in the vicinity of the maximum point by expression of Gaussian type. This, in turn, allows us to overcome the computational difficulties for the calculation of the integrals expressing the cross section to sufficiently large numbers of particles. We have managed to overcome these problems in calculating the proton-proton inelastic cross-section for production (n ≤ 8) number of secondary particles in within the framework of φ3 model. As the result the obtained dependence of inelastic cross-section and total scattering cross-section on the energy √s are qualitative agrees with the experimental data. Such description of total cross-section behavior differs considerably from existing now description, where reggeons exchange with the intercept greater than unity is considered.
文摘We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact, particles in thi</span>s framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach to interparticle (macroscopic) potential function which is presented by the analytical equation with terms of exponent of inter-particle distance, like a Lennard-Jones potential usually used in molecular dynamics simulation. Equation of motion for these macroscopic particles has dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we are able to carry out uniaxial loading simulation of aluminum rod. The method can also reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to try to include plasticity in this multi-scale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading and this new and simple framework of materials modeling has been confirmed to have certain effectiveness to be used in materials simulations. We also assess the effect of the order of loadings in opposite directions including yield and plastic states and find that an irreversible behavior depends on different response of the particle system between tensile and compressive loadings.
文摘为解决多基站定位模型中基站之间同步代价高的问题,提出了一种基于多根长馈线天线基站的到达时间差(Time Difference of Arrival,TDOA)定位模型,给出了模型方程和求解方法,该方法将复杂的3对距离差方程组转化为1个一元八次方程,然后采用Aberth-Newton迭代法来迭代求解方程。通过计算机仿真验证了基于多根长馈线天线基站的TDOA定位模型和解法的有效性,并对该模型的多解问题进行了分析,用优化基站布局的方案,解决了定位模型的唯一解问题。本定位模型在覆盖范围数百米时,定位精度可达分米级。
基金supported by the National Natural Science Foundation of China (No. 70901076)Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120021)Natural Science Foundation of Hunan Province (No. 10JJ4046)
文摘The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.