Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
为提高非线性退化轨迹拟合的精度,针对多阶段退化中的非线性规律建立Wiener过程模型,考虑变点的连续性与部件个体的差异性,给出基于非线性复杂退化的可靠性评估方法。结合幂律函数推导出非线性多阶段Wiener过程模型,得到模型参数的极大...为提高非线性退化轨迹拟合的精度,针对多阶段退化中的非线性规律建立Wiener过程模型,考虑变点的连续性与部件个体的差异性,给出基于非线性复杂退化的可靠性评估方法。结合幂律函数推导出非线性多阶段Wiener过程模型,得到模型参数的极大似然估计量;通过最小均方误差原则给出变点以及幂参数的初值确定方法;根据SIC(schwarz information criterion)方法得到模型变点的精确值,并检验其准确性;结合不同部件之间的差异性,得到变点的连续分布;推导出非线性Wiener过程连续时段内的可靠度函数估计;利用本模型对高压脉冲电容器电容相对变化量的退化数据建模,与线性建模结果对比,验证多阶段Wiener过程模型在可靠性评估方面的有效性与可行性,估计结果更接近真实值。展开更多
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
文摘为提高非线性退化轨迹拟合的精度,针对多阶段退化中的非线性规律建立Wiener过程模型,考虑变点的连续性与部件个体的差异性,给出基于非线性复杂退化的可靠性评估方法。结合幂律函数推导出非线性多阶段Wiener过程模型,得到模型参数的极大似然估计量;通过最小均方误差原则给出变点以及幂参数的初值确定方法;根据SIC(schwarz information criterion)方法得到模型变点的精确值,并检验其准确性;结合不同部件之间的差异性,得到变点的连续分布;推导出非线性Wiener过程连续时段内的可靠度函数估计;利用本模型对高压脉冲电容器电容相对变化量的退化数据建模,与线性建模结果对比,验证多阶段Wiener过程模型在可靠性评估方面的有效性与可行性,估计结果更接近真实值。