The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obli- quely incident SV waves. A wave-number transform...The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obli- quely incident SV waves. A wave-number transform is first applied along the valley's axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is con- firmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are dis- cussed in detail resulting in some conclusions.展开更多
In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synth...In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half...Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half-space were obtained by a complex function method based on potential function and multi-polar coordinate. The steady state Biot’s dynamic field equations of porous elastic solid with a viscous liquid were uncoupled into Helmholtz equations via given potential functions. A circular cavity with large radius is used to replace the straight boundary of the saturated porous elastic half-space. The stresses and pore pressures were obtained by using complex functions in multi-polar coordinates with certain boundary conditions of the solid matrix and the fluid matrix. The approximate solutions were compared to existing numerical solutions. Then the variations of the coefficients of dynamic stress concentration and the pore pressures concentration on boundaries of the cavity were discussed with different parameter conditions. The results of the given numerical example indicate that the method used is useful and efficient to the scattering and dynamic stress concentration of plane dilatational waves in saturated porous elastic half-space.展开更多
基金supported by the National Natural Science Foundation of China (50908156,50978183)Tianjin Research Program of Application Foundation and Advanced Technology (12JCQNJC04700)
文摘The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obli- quely incident SV waves. A wave-number transform is first applied along the valley's axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is con- firmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are dis- cussed in detail resulting in some conclusions.
文摘In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
文摘Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half-space were obtained by a complex function method based on potential function and multi-polar coordinate. The steady state Biot’s dynamic field equations of porous elastic solid with a viscous liquid were uncoupled into Helmholtz equations via given potential functions. A circular cavity with large radius is used to replace the straight boundary of the saturated porous elastic half-space. The stresses and pore pressures were obtained by using complex functions in multi-polar coordinates with certain boundary conditions of the solid matrix and the fluid matrix. The approximate solutions were compared to existing numerical solutions. Then the variations of the coefficients of dynamic stress concentration and the pore pressures concentration on boundaries of the cavity were discussed with different parameter conditions. The results of the given numerical example indicate that the method used is useful and efficient to the scattering and dynamic stress concentration of plane dilatational waves in saturated porous elastic half-space.