Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.There...Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.展开更多
BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a ...BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.展开更多
Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related...Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.展开更多
Melia dubia Cav. of family Meliaceae is a fast growing, high value tree species native to India. Isolating DNA from matured dried leaves of M. dubia was difficult due to accumulation of secondary metabolites, majorly ...Melia dubia Cav. of family Meliaceae is a fast growing, high value tree species native to India. Isolating DNA from matured dried leaves of M. dubia was difficult due to accumulation of secondary metabolites, majorly polyphenolics, which resulted in dark brown to black colour of the pellet. In this study, a modified STE-(Sucrose, Tris-HCl and Ethylene Diamine Tetra Acetic Acid) CTAB (hexadecyltrimethylammonium bromide) method was standardized for removal of polyphenolics. The protocol developed yielded 200 - 1000 ng/μl of quality DNA without any impurities as evident by A260/280 ratio ranging from 1.75 - 2.0. It was also suitable for extracting quality DNA from other members of Meliaceae like Azadirachta indica and Melia azedarach. In downstream applications, the extracted DNA was used for PCR amplification by using ISSR and SSR markers. ISSR PCR conditions were optimized in a reaction volume of 25 μl, consisting of 30 ng of template DNA, 1.5 mM MgCl<sub>2</sub>, 200 μM of each of dNTPs and 2 U of Taq polymerase. The best amplification was observed and the same was applicable for SSR markers.展开更多
Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor....Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor. Here, we constructed an Agrobacterium tumefaciensmediated transformation for generation of marker-free transgenic plants from navel orange(Citrus sinensis Osbeck) mature stems using a CreloxP recombination system. To efficiently recover the regenerated buds from mature tissues, five recovery methods were compared: in vitro micrografting of 0.1-0.5(1-2 weeks), > 0.5 cm(3-4 weeks) and > 1 cm long lignified bud and in vitro micrografting of explants with a bud and rooting regenerated bud. The data showed that in vitro micrografting of > 1 cm long regenerated bud with expanded leaves after one month of continuous culture for lignification was the optimal solution for plant recovery from mature tissues. Transgenic plants without selectable marker genes were created from navel orange(Citrus sinensis Osbeck) tissue using a transformation vector PLI-35SPR1aCB containing a Cre/loxP system recombination together with genes encoding the selectable marker isopentenyl transferase(IPT) and an anti-bacterial peptide(PR1aCB).Using IPT positive selection, the transformation efficiency determined by PCR was 0.9%, and in total, 20 transgenic plants were obtained.Southern blotting confirmed further their transgenicity. PCR and sequencing analysis demonstrated that both the Cre and IPT genes had been successfully removed from the transgenic plants(deletion efficiency 100%). Over all, using Cre/loxP system recombination together with the IPT positive selection, marker-free transgenic plants can be recovered efficiently from mature tissues of navel orange(Citrus sinensis Osbeck), which provides a potential method for production of transgenic plants from citrus mature tissue.展开更多
BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients ha...BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients have insufficient awareness of the importance of AVF,leading to poor effectiveness of limb function exercise.The self-management education model can effectively promote patients to take pro-active health-related actions.This study focuses on the characteristics of patients during the peri-AVF period and conducts a phased limb function exercise under the guidance of the self-management education model to observe changes in fac-tors such as the maturity of AVF.AIM To assess the impact of stage-specific limb function exercises,directed by a self-management education model,on the maturation status of AVFs.METHODS This study is a randomized controlled trial involving 74 patients with forearm AVFs from the Nephrology Department of a tertiary hospital in Sichuan Province,China.Patients were randomly divided into an observation group and a control group using a random number table method.The observation group underwent tailored stage-specific limb func-tion exercises,informed by a self-management education model which took into account the unique features of AVF at various stages,in conjunction with routine care.Conversely,the control group was given standard limb function exercises along with routine care.The assessment involves the maturity of AVFs post-intervention,post-operative complications,and the self-management level of the fistula in both groups patients.Analyses were conducted using SPSS version 23.0.Count data were represented by frequency and percentage and subjected to chi-square test comparisons.Measurement data adhering to a normal distribution were presented as mean±SD.The independent samples t-test was utilized for inter-group comparisons,while the paired t-test was used for intra-group comparisons.For measurement data not fitting a normal distribution,the median and interquartile range were presented and analyzed using the Wilcoxon rank sum test.RESULTS At the 8-wk postoperative mark,the observation group demonstrated significantly higher scores in AVF symptom recognition,symptom prevention,and self-management compared to the control group(P<0.05).However,the variance in symptom management scores between the observation and control groups lacked statistical signi-ficance(P>0.05).At 4 wk after the operation,the observation group displayed a superior vessel diameter and depth from the skin of the drainage vessels in comparison to the control group(P<0.05).While the observation group did manifest elevated blood flow rates in the drainage vessels relative to the control group,this distinction was not statistically significant(P>0.05).By the 8-wk postoperative interval,the observation group outperformed the control group with notable enhancements in blood flow rates,vessel diameter,and depth from the skin of drainage vessels(P<0.01).Seven days following the procedure,the observation group manifested significantly diminished limb swelling and an overall reduced complication rate in contrast to the control group(P<0.05).The evaluation of infection,thrombosis,embolism,arterial aneurysm stenosis,and incision bleeding showed no notable differences between the two groups(P>0.05).By the 4-wk postoperative juncture,complications between the observation and control groups were statistically indistinguishable(P>0.05).CONCLUSION Stage-specific limb function exercises,under the guidance of a self-management education model,amplify the capacity of AVF patients to discern and prevent symptoms.Additionally,they expedite AVF maturation and miti-gate postoperative limb edema,underscoring their efficacy as a valuable method for the care and upkeep of AVF in hemodialysis patients.展开更多
Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage f...Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.展开更多
Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove ...Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.展开更多
The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and...The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.展开更多
The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of...The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of cerebral blood vessels.Although for many years brain activity and blood flow were conceived as independent processes,MRI-based functional brain imaging demonstrated that there is a coupling between them.展开更多
In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected...In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.展开更多
Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male st...Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male sterile materials and facilitating cross-breeding.Despite its importance,there is a lack of research on the regulation mechanism of male reproductive development in watermelon.In this study,we identified that ClESR2,a VIIIb subclass member in the APETALA2/Ethylene Responsive Factor(AP2/ERF)superfamily,was a key factor in pollen development.RNA insitu hybridization confirmed significantClESR2 expression in the tapetum and pollen during the later stage of anther development.The pollens of transgenic plants showed major defects in morphology and vitality at the late development stage.The RNA-seq and protein interaction assay confirmed that ClESR2 regulates pollen morphology and fertility by interacting with key genes involved in pollen development at both transcriptional and protein levels.These suggest that Enhancer of Shoot Regeneration 2(ESR2)plays an important role in pollen maturation and vitality.This study helps understand the male reproductive development of watermelon,providing a theoretical foundation for developing male sterile materials.展开更多
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr...Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.展开更多
Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Mo...Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.展开更多
The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and aft...The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.展开更多
Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era...Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.展开更多
Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions...Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.展开更多
基金This work was supported by the Science and Technology Development Plan Project of Jilin Province,China(20200402115NC).
文摘Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.
文摘BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Precision Seed Design and Breeding,XDA24010108)National Natural Science Foundation of China(31972780&31721005)+1 种基金National Key R&D Program of China(2018YFA0801000)State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)。
文摘Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
文摘Melia dubia Cav. of family Meliaceae is a fast growing, high value tree species native to India. Isolating DNA from matured dried leaves of M. dubia was difficult due to accumulation of secondary metabolites, majorly polyphenolics, which resulted in dark brown to black colour of the pellet. In this study, a modified STE-(Sucrose, Tris-HCl and Ethylene Diamine Tetra Acetic Acid) CTAB (hexadecyltrimethylammonium bromide) method was standardized for removal of polyphenolics. The protocol developed yielded 200 - 1000 ng/μl of quality DNA without any impurities as evident by A260/280 ratio ranging from 1.75 - 2.0. It was also suitable for extracting quality DNA from other members of Meliaceae like Azadirachta indica and Melia azedarach. In downstream applications, the extracted DNA was used for PCR amplification by using ISSR and SSR markers. ISSR PCR conditions were optimized in a reaction volume of 25 μl, consisting of 30 ng of template DNA, 1.5 mM MgCl<sub>2</sub>, 200 μM of each of dNTPs and 2 U of Taq polymerase. The best amplification was observed and the same was applicable for SSR markers.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. XDJK 2018B016)the National Natural Sciences Foundation of China (Grant No. 31972393)+1 种基金he earmarked fund for China Agriculture Research System (Grant No. CARS-26)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX1064)。
文摘Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor. Here, we constructed an Agrobacterium tumefaciensmediated transformation for generation of marker-free transgenic plants from navel orange(Citrus sinensis Osbeck) mature stems using a CreloxP recombination system. To efficiently recover the regenerated buds from mature tissues, five recovery methods were compared: in vitro micrografting of 0.1-0.5(1-2 weeks), > 0.5 cm(3-4 weeks) and > 1 cm long lignified bud and in vitro micrografting of explants with a bud and rooting regenerated bud. The data showed that in vitro micrografting of > 1 cm long regenerated bud with expanded leaves after one month of continuous culture for lignification was the optimal solution for plant recovery from mature tissues. Transgenic plants without selectable marker genes were created from navel orange(Citrus sinensis Osbeck) tissue using a transformation vector PLI-35SPR1aCB containing a Cre/loxP system recombination together with genes encoding the selectable marker isopentenyl transferase(IPT) and an anti-bacterial peptide(PR1aCB).Using IPT positive selection, the transformation efficiency determined by PCR was 0.9%, and in total, 20 transgenic plants were obtained.Southern blotting confirmed further their transgenicity. PCR and sequencing analysis demonstrated that both the Cre and IPT genes had been successfully removed from the transgenic plants(deletion efficiency 100%). Over all, using Cre/loxP system recombination together with the IPT positive selection, marker-free transgenic plants can be recovered efficiently from mature tissues of navel orange(Citrus sinensis Osbeck), which provides a potential method for production of transgenic plants from citrus mature tissue.
基金Supported by The Research Project 2022 of The People's Hospital of Jianyang City,No.JY202208.
文摘BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients have insufficient awareness of the importance of AVF,leading to poor effectiveness of limb function exercise.The self-management education model can effectively promote patients to take pro-active health-related actions.This study focuses on the characteristics of patients during the peri-AVF period and conducts a phased limb function exercise under the guidance of the self-management education model to observe changes in fac-tors such as the maturity of AVF.AIM To assess the impact of stage-specific limb function exercises,directed by a self-management education model,on the maturation status of AVFs.METHODS This study is a randomized controlled trial involving 74 patients with forearm AVFs from the Nephrology Department of a tertiary hospital in Sichuan Province,China.Patients were randomly divided into an observation group and a control group using a random number table method.The observation group underwent tailored stage-specific limb func-tion exercises,informed by a self-management education model which took into account the unique features of AVF at various stages,in conjunction with routine care.Conversely,the control group was given standard limb function exercises along with routine care.The assessment involves the maturity of AVFs post-intervention,post-operative complications,and the self-management level of the fistula in both groups patients.Analyses were conducted using SPSS version 23.0.Count data were represented by frequency and percentage and subjected to chi-square test comparisons.Measurement data adhering to a normal distribution were presented as mean±SD.The independent samples t-test was utilized for inter-group comparisons,while the paired t-test was used for intra-group comparisons.For measurement data not fitting a normal distribution,the median and interquartile range were presented and analyzed using the Wilcoxon rank sum test.RESULTS At the 8-wk postoperative mark,the observation group demonstrated significantly higher scores in AVF symptom recognition,symptom prevention,and self-management compared to the control group(P<0.05).However,the variance in symptom management scores between the observation and control groups lacked statistical signi-ficance(P>0.05).At 4 wk after the operation,the observation group displayed a superior vessel diameter and depth from the skin of the drainage vessels in comparison to the control group(P<0.05).While the observation group did manifest elevated blood flow rates in the drainage vessels relative to the control group,this distinction was not statistically significant(P>0.05).By the 8-wk postoperative interval,the observation group outperformed the control group with notable enhancements in blood flow rates,vessel diameter,and depth from the skin of drainage vessels(P<0.01).Seven days following the procedure,the observation group manifested significantly diminished limb swelling and an overall reduced complication rate in contrast to the control group(P<0.05).The evaluation of infection,thrombosis,embolism,arterial aneurysm stenosis,and incision bleeding showed no notable differences between the two groups(P>0.05).By the 4-wk postoperative juncture,complications between the observation and control groups were statistically indistinguishable(P>0.05).CONCLUSION Stage-specific limb function exercises,under the guidance of a self-management education model,amplify the capacity of AVF patients to discern and prevent symptoms.Additionally,they expedite AVF maturation and miti-gate postoperative limb edema,underscoring their efficacy as a valuable method for the care and upkeep of AVF in hemodialysis patients.
文摘Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.
文摘Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.
文摘The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.
基金funded by the Ministry of Science,Innovation and Universities(MICIU)through the project NEUR-ON-A-CHIP(RTI2018-097038-B-C21 and RTI2018-097038-B-C22)(to MM,AL)the project UNIBBB(PDC2022-133918-C21)(to MM,AL)+4 种基金supported by Networking Biomedical Research Center(CIBER),Spain(to MM,AL)CIBER is an initiative funded by the VI National R&D&i Plan 2008–2011,Iniciativa Ingenio 2010,Consolider Program,CIBER Actions,and the Instituto de Salud Carlos III,with the support of the European Regional Development Fundfunded by the CERCA Programby the Commission for Universities and Research of the Department of Innovation,Universities,and Enterprise of the Generalitat de Catalunya(2017 SGR 1079)(to MM,AL)support from the program for predoctoral contracts for the training of doctors of the State Training Subprogram for the Promotion of Talent and its Employability in R+D+I(PRE2019-088286)by the Ministry of Science,Innovation and Universities(MICIU)。
文摘The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of cerebral blood vessels.Although for many years brain activity and blood flow were conceived as independent processes,MRI-based functional brain imaging demonstrated that there is a coupling between them.
文摘In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.
基金support from the National Key Research and Development Program of China(2022YFD1602000)the National Natural Science Foundation of China(32202514,U22A20498 and 32072596)+2 种基金the Joint Fund of Henan Province Science and Technology Research and Development Plan,China(222103810009)the Science and Technology Innovation Team of Shaanxi,China(2021TD-32)the China Postdoctoral Science Foundation(2022M711064 and 2023M741062).
文摘Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male sterile materials and facilitating cross-breeding.Despite its importance,there is a lack of research on the regulation mechanism of male reproductive development in watermelon.In this study,we identified that ClESR2,a VIIIb subclass member in the APETALA2/Ethylene Responsive Factor(AP2/ERF)superfamily,was a key factor in pollen development.RNA insitu hybridization confirmed significantClESR2 expression in the tapetum and pollen during the later stage of anther development.The pollens of transgenic plants showed major defects in morphology and vitality at the late development stage.The RNA-seq and protein interaction assay confirmed that ClESR2 regulates pollen morphology and fertility by interacting with key genes involved in pollen development at both transcriptional and protein levels.These suggest that Enhancer of Shoot Regeneration 2(ESR2)plays an important role in pollen maturation and vitality.This study helps understand the male reproductive development of watermelon,providing a theoretical foundation for developing male sterile materials.
文摘Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.
文摘Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.
文摘The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.
文摘Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.
基金supported by grants from the National Key R&D Program of China (2023YFD1201300)CAAS Agricultural Science and Technology Innovation Project
文摘Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.