This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least sq...To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, refl...The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.展开更多
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
Non Orthogonal Frequency Division Multiplexing (NOFDM) systems make use of a transmission signal set which is not restricted to orthonormal bases unlike previous OFDM systems. The usage of non-orthogonal bases general...Non Orthogonal Frequency Division Multiplexing (NOFDM) systems make use of a transmission signal set which is not restricted to orthonormal bases unlike previous OFDM systems. The usage of non-orthogonal bases generally results in a trade-off between Bit Error Rate (BER) and receiver complexity. This paper studies the use of Gabor based on designing a Spectrally Efficient Multi-Carrier Modulation Scheme. Using Gabor Transform with a specific Gaussian envelope;we derive the expected BER-SNR performance. The spectral usage of such a NOFDM system when affected by a channel that imparts Additive White Gaussian Noise (AWGN) is estimated. We compare the obtained results with an OFDM system and observe that with comparable BER performance, this system gives a better spectral usage. The effect of window length on spectral usage is also analyzed.展开更多
In multi-user wireless communication systems,adaptive modulation and scheduling are promising techniques for increasing system throughput.However,for multi-carrier systems,they will lead to overwhelming user feedback ...In multi-user wireless communication systems,adaptive modulation and scheduling are promising techniques for increasing system throughput.However,for multi-carrier systems,they will lead to overwhelming user feedback overhead for Channel Quality Indication(CQI) in every subcarrier.In our work,novel CQI feedback schemes are proposed based on the recently proposed theory of Compressive Sensing(CS).First,the standard CS method is introduced to reduce CQI feedback overhead for multi-carrier Multiple-Input Multiple-Output transmission.In addition,via further research on the design of measurement matrix with standard CS,a novel CQI feedback scheme based on subspace CS is proposed by exploiting the subspace information of the underlying signal and the feedback rate is greatly decreased.Simulation results show that,with the same feedback rate,the throughputs with subspace CS outperform the Discrete Cosine Transform(DCT)-based method which is usually employed,and the throughputs with standard CS outperform DCT when the feedback rate is larger than 0.13 bits/subcarrier.展开更多
To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its math...To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its mathematical expression based on the M-band wavelet multi-carrier modulation system model. Through the analysis of the mathematical expression and combining with the perfect reconstruction conditions of the filter banks, we propose the design conditions of an M-band filter to reduce and eliminate the ICI. The impulse response model of the filter design conditions and an iterative algorithm is also established. The simulation results show that the proposed ICI reduction and elimination methods can effectively improve the system performance.展开更多
Single-layered zirconium pentatelluride (ZrTes) has been predicted to be a large-gap two-dimensional (2D) topolog- ical insulator, which has attracted particular attention in topological phase transitions and pote...Single-layered zirconium pentatelluride (ZrTes) has been predicted to be a large-gap two-dimensional (2D) topolog- ical insulator, which has attracted particular attention in topological phase transitions and potential device applications. Herein, we investigated the transport properties in ZrTe5 films as a function of thickness, ranging from a few nm to several hundred nm. We determined that the temperature of the resistivity anomaly peak (Tp) tends to increase as the thickness decreases. Moreover, at a critical thickness of ~ 40 rim, the dominating carriers in the films change from n-type to p-type. A comprehensive investigation of Shubnikov-de Hass (SdH) oscillations and Hall resistance at variable temperatures revealed a multi-carrier transport tendency in the thin films. We determined the carrier densities and mobilities of two majority car- riers using the simplified two-carrier model. The electron carriers can be attributed to the Dirac band with a non-trivial Berry phase ~, while the hole carriers may originate from surface chemical reaction or unintentional doping during the microfabrication process. It is necessary to encapsulate the ZrTe5 film in an inert or vacuum environment to potentially achieve a substantial improvement in device quality.展开更多
Generation of single-sideband (SSB) multi-carrier source based on a recirculating frequency shifter (RFS) is anal- ysed theoretically and realized experimentally. The effects of affecting factors originating from ...Generation of single-sideband (SSB) multi-carrier source based on a recirculating frequency shifter (RFS) is anal- ysed theoretically and realized experimentally. The effects of affecting factors originating from the deviation from the right operation bias voltage and unbalanced amplitude, and the phase of the radio frequency (RF) drive signals on the performance of the multi-tone source are discussed in detail. Based on the theoretical analysis, high-quality 50-tone out- put is successfully realized. Experiments under some implementation imperfections are also carried out. The imperfect and low-quality output results are in good agreement with theoretical analysis.展开更多
By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwic...By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing.展开更多
The dominate factors caused by reasons of losing the orthogonality in fading channel including FBC (fading branch correlation), CFO (carrier frequency offset), and even the CPN (carrier phase noise) are novel discussi...The dominate factors caused by reasons of losing the orthogonality in fading channel including FBC (fading branch correlation), CFO (carrier frequency offset), and even the CPN (carrier phase noise) are novel discussion in this letter. The first one factor causes the ISI (inter-symbol interference), and, however, the latter two will lead to the phenomenon of CPE (common phase error) and ICI (inter-carrier interference). On the other hand, they will lead to the loss of orthogonality for the radio system with multi-carrier modulating schemes, i.e., both them mainly deteriorate a wireless communication system. Eventually, in this letter not only the analytical expressions are derived, but a three dimension numerical results from the analysis involve the three parameters also illustrated is.展开更多
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c...Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
基金Doctoral Programme Foundation of Institution of Higher Education of China.
文摘To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金Major funding for this research was provided under the United States Federal Aviation Administration (FAA) Aviation Weather Research Program Advanced Weather Radar Technologies Prod-uct Development Team Memorandum Of Understanding(MOU)partial funding was provided under NOAA-University of Oklahoma Cooperative Agreement Grant No. NA17RJ1227, U.S. Department of Commerce
文摘The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One multi-radar observations is the synchronization of all of the scientific issues associated with the mosaic of the observations. Since radar data is usually rapidly updated (-every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assunfing that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘Non Orthogonal Frequency Division Multiplexing (NOFDM) systems make use of a transmission signal set which is not restricted to orthonormal bases unlike previous OFDM systems. The usage of non-orthogonal bases generally results in a trade-off between Bit Error Rate (BER) and receiver complexity. This paper studies the use of Gabor based on designing a Spectrally Efficient Multi-Carrier Modulation Scheme. Using Gabor Transform with a specific Gaussian envelope;we derive the expected BER-SNR performance. The spectral usage of such a NOFDM system when affected by a channel that imparts Additive White Gaussian Noise (AWGN) is estimated. We compare the obtained results with an OFDM system and observe that with comparable BER performance, this system gives a better spectral usage. The effect of window length on spectral usage is also analyzed.
基金supported by National Natural Science Foundation of China under Grant No.60972041,60872104Open Research Foundation of National Mobile Communications Research Laboratory,Southeast University under Grant No.N200809+4 种基金Natural Science Fundamental Research Program of Jiangsu Universities under Grant No.08 KJD510001PH.D.Program Foundation of Ministry of Education under Grant No.200802930004National Special Project under Grant No.2009ZX03003-006National Basic Research Program of China under Grant No.2007CB310607Graduate Innovation Program under Grant No.CX10B-186Z
文摘In multi-user wireless communication systems,adaptive modulation and scheduling are promising techniques for increasing system throughput.However,for multi-carrier systems,they will lead to overwhelming user feedback overhead for Channel Quality Indication(CQI) in every subcarrier.In our work,novel CQI feedback schemes are proposed based on the recently proposed theory of Compressive Sensing(CS).First,the standard CS method is introduced to reduce CQI feedback overhead for multi-carrier Multiple-Input Multiple-Output transmission.In addition,via further research on the design of measurement matrix with standard CS,a novel CQI feedback scheme based on subspace CS is proposed by exploiting the subspace information of the underlying signal and the feedback rate is greatly decreased.Simulation results show that,with the same feedback rate,the throughputs with subspace CS outperform the Discrete Cosine Transform(DCT)-based method which is usually employed,and the throughputs with standard CS outperform DCT when the feedback rate is larger than 0.13 bits/subcarrier.
基金supported by the National Natural Science Foundation of China (Grant No.60872114)
文摘To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its mathematical expression based on the M-band wavelet multi-carrier modulation system model. Through the analysis of the mathematical expression and combining with the perfect reconstruction conditions of the filter banks, we propose the design conditions of an M-band filter to reduce and eliminate the ICI. The impulse response model of the filter design conditions and an iterative algorithm is also established. The simulation results show that the proposed ICI reduction and elimination methods can effectively improve the system performance.
基金Project supported by Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06D348)Shenzhen Peacock Program(Grant No.KQTD2016022619565991)
文摘Single-layered zirconium pentatelluride (ZrTes) has been predicted to be a large-gap two-dimensional (2D) topolog- ical insulator, which has attracted particular attention in topological phase transitions and potential device applications. Herein, we investigated the transport properties in ZrTe5 films as a function of thickness, ranging from a few nm to several hundred nm. We determined that the temperature of the resistivity anomaly peak (Tp) tends to increase as the thickness decreases. Moreover, at a critical thickness of ~ 40 rim, the dominating carriers in the films change from n-type to p-type. A comprehensive investigation of Shubnikov-de Hass (SdH) oscillations and Hall resistance at variable temperatures revealed a multi-carrier transport tendency in the thin films. We determined the carrier densities and mobilities of two majority car- riers using the simplified two-carrier model. The electron carriers can be attributed to the Dirac band with a non-trivial Berry phase ~, while the hole carriers may originate from surface chemical reaction or unintentional doping during the microfabrication process. It is necessary to encapsulate the ZrTe5 film in an inert or vacuum environment to potentially achieve a substantial improvement in device quality.
基金Project supported by the National Natural Science Foundation of China (Grant No.60977049)the Chinese Universities Scientific Fund (Grant No.BUPT 2009RC0413)
文摘Generation of single-sideband (SSB) multi-carrier source based on a recirculating frequency shifter (RFS) is anal- ysed theoretically and realized experimentally. The effects of affecting factors originating from the deviation from the right operation bias voltage and unbalanced amplitude, and the phase of the radio frequency (RF) drive signals on the performance of the multi-tone source are discussed in detail. Based on the theoretical analysis, high-quality 50-tone out- put is successfully realized. Experiments under some implementation imperfections are also carried out. The imperfect and low-quality output results are in good agreement with theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Nos. 90816025, 10632060,and 10640150395)the National Basic Research Program of China (No. G2006CB601202)the Fund of State Key Laboratory of Explosion Science and Technology (No. KFJJ08-15)
文摘By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing.
文摘The dominate factors caused by reasons of losing the orthogonality in fading channel including FBC (fading branch correlation), CFO (carrier frequency offset), and even the CPN (carrier phase noise) are novel discussion in this letter. The first one factor causes the ISI (inter-symbol interference), and, however, the latter two will lead to the phenomenon of CPE (common phase error) and ICI (inter-carrier interference). On the other hand, they will lead to the loss of orthogonality for the radio system with multi-carrier modulating schemes, i.e., both them mainly deteriorate a wireless communication system. Eventually, in this letter not only the analytical expressions are derived, but a three dimension numerical results from the analysis involve the three parameters also illustrated is.
文摘Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.