A multi-gap and multi-channel gas switch with convexo-convex discal planet electrodes was designed and investigated. Eight gaps are formed in series by a trigger electrode, six intermediate electrodes and two high vol...A multi-gap and multi-channel gas switch with convexo-convex discal planet electrodes was designed and investigated. Eight gaps are formed in series by a trigger electrode, six intermediate electrodes and two high voltage electrodes with a uniform gap length of 5 ram. The self breakdown and triggered breakdown performance of the switch are reported. Both the delay time and jitter decrease with the increase in the trigger voltage, switching coefficient and the decrease in the trigger isolating resistor. The delay time of the switch is about 40 ns, and the jitter is less than 2 ns when charged with 4-85 kV and triggered by a voltage pule of -75 kV. The inductance of the switch is about 30 nH.展开更多
为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达...为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。展开更多
In traditional universal asynchronous receiver transmitter (UART) controller, the data transmission is inefficient and the data bus utilization ratio is low. A novel design is provided to solve these problems. The a...In traditional universal asynchronous receiver transmitter (UART) controller, the data transmission is inefficient and the data bus utilization ratio is low. A novel design is provided to solve these problems. The architecture of the system is introduced, the flow charts of data processing as well as the implementation state machine are also presented in detail. This paper is concluded by comparing the performance of this design, which is realized on field programmable gate army (FPGA) using Verilog hardware description language (HDL), with other traditional UART controllers.展开更多
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optima...The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.展开更多
A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic ...A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.展开更多
AZ91D magnesium alloy was processed by equal channel angular extrusion(ECAE).The influence of extrusion temperature,extrusion pass and extrusion route on the ultimate strength of the extruded billet was analyzed.The p...AZ91D magnesium alloy was processed by equal channel angular extrusion(ECAE).The influence of extrusion temperature,extrusion pass and extrusion route on the ultimate strength of the extruded billet was analyzed.The process of multi-pass extrusion was simulated with the method of finite element analysis,and the continuity and uniformity of effective strain in multi-pass extrusion were investigated.The results show that extrusion pass plays the most important role in improving the ultimate strength of AZ91D magnesium alloy,the extrusion route is the second,and the extrusion temperature is the last.From the numerical simulation,there exists the continuity of the accumulated deformation in multi-pass extrusion and the effective strain increases linearly.The tendency of the strain uniformity is different in multi-pass extrusion with extrusion routes.The results of experiment agree with those of numerical simulation.展开更多
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation techn...This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.展开更多
A conventional multi-channel pulse amplitude analyzer acquires single energy spectrum,but provides no information on its tendency with time.To address the limitation,we propose a scheme of time-sharing multichannel pu...A conventional multi-channel pulse amplitude analyzer acquires single energy spectrum,but provides no information on its tendency with time.To address the limitation,we propose a scheme of time-sharing multichannel pulse amplitude analyzer(TSMCA).A dual-port random access memory is divided into two storage spaces,one for current energy spectrum data acquisition and another for previous energy spectrum data storage.The two tasks can be performed simultaneously,and the time-related variation tendency of energy spectrum can be obtained.A prototype system of TSMCA is designed.It performs nicely,with maximum channel number of 4096 in capacity of 2^(32)/Ch,minimal time-sharing slice of 25 ms,the differential nonlinearity of <1.5%,and the integral nonlinearity of <0.3%.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-cha...There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.展开更多
We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footpr...We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.展开更多
Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-c...Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.展开更多
In this paper, a new maximum likelihood (ML) classification algorithm is proposed to classify the multi-look polarimetric synthetic aperture radar (SAR) imagery. Experimental results with the NASA/JPL airborne L-band ...In this paper, a new maximum likelihood (ML) classification algorithm is proposed to classify the multi-look polarimetric synthetic aperture radar (SAR) imagery. Experimental results with the NASA/JPL airborne L-band polarimetric SAR data demonstrate the effectiveness of the new algorithm. Furthermore, when using the algorithm in the classifications with subsets of the multi-look polarimetric SAR data, the polarization-channel optimization for the terrain type classification is implemented.展开更多
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
Wireless mesh networking (WMN) is an emerging technology that enables multihop wireless connectivity to areas where wiring or installing cables is difficult or expensive. Multicast is a form of communication that deli...Wireless mesh networking (WMN) is an emerging technology that enables multihop wireless connectivity to areas where wiring or installing cables is difficult or expensive. Multicast is a form of communication that delivers information from a source to a group of destinations. In a single-channel WMN, all nodes share and communicate with each other via the same channel. In such a network, the throughput capacity of multicast degrades significantly as the network size increases. A critical factor that contributes to this rapid degradation is the co-channel interference in single-channel WMNs. The major advantage of WMN is that power is not the major issue as compare to other wireless network like MANET, Sensor etc. Hence Power can be optimally utilized in WMN to increase throughput and total network efficiency. In this paper, we propose a channel assignment algorithm for multicast based on high channel capacity with minimum interference. This scheme usesall overlapping and non overlapping channel for the channel assignment. By this scheme we provide better performance in terms of average packet delivery ratio, average throughput and average end to end delay with respect to multichannel multicast channel assignment schemes.展开更多
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)...Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.展开更多
The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to s...The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice sig- nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen- cy analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis- tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.展开更多
基金supported by National Natural Science Foundation of China(Nos.50477019,50637010)the State Key Laboratory of Electrical Insulation and Power Equipment of China(EIPE.09207)
文摘A multi-gap and multi-channel gas switch with convexo-convex discal planet electrodes was designed and investigated. Eight gaps are formed in series by a trigger electrode, six intermediate electrodes and two high voltage electrodes with a uniform gap length of 5 ram. The self breakdown and triggered breakdown performance of the switch are reported. Both the delay time and jitter decrease with the increase in the trigger voltage, switching coefficient and the decrease in the trigger isolating resistor. The delay time of the switch is about 40 ns, and the jitter is less than 2 ns when charged with 4-85 kV and triggered by a voltage pule of -75 kV. The inductance of the switch is about 30 nH.
文摘为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。
基金National Natural Science Foundation of China (60532030)
文摘In traditional universal asynchronous receiver transmitter (UART) controller, the data transmission is inefficient and the data bus utilization ratio is low. A novel design is provided to solve these problems. The architecture of the system is introduced, the flow charts of data processing as well as the implementation state machine are also presented in detail. This paper is concluded by comparing the performance of this design, which is realized on field programmable gate army (FPGA) using Verilog hardware description language (HDL), with other traditional UART controllers.
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
基金supported by the Major Program of National Natural Science Foundation of China (10990012)the National Natural Science Foundation of China (61201296,61271024)+1 种基金the Fundamental Research Funds for the Central Universities (K5051202037)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12205)
文摘The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.
文摘A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.
基金Project(50475029)supported by the National Natural Science Foundation of China
文摘AZ91D magnesium alloy was processed by equal channel angular extrusion(ECAE).The influence of extrusion temperature,extrusion pass and extrusion route on the ultimate strength of the extruded billet was analyzed.The process of multi-pass extrusion was simulated with the method of finite element analysis,and the continuity and uniformity of effective strain in multi-pass extrusion were investigated.The results show that extrusion pass plays the most important role in improving the ultimate strength of AZ91D magnesium alloy,the extrusion route is the second,and the extrusion temperature is the last.From the numerical simulation,there exists the continuity of the accumulated deformation in multi-pass extrusion and the effective strain increases linearly.The tendency of the strain uniformity is different in multi-pass extrusion with extrusion routes.The results of experiment agree with those of numerical simulation.
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.
基金supported by National Natural Science Foundation of China(61473134,61573220)the Postdoctoral Science Foundation of China(2017M622231)
文摘This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.
基金supported by the National Natural Science Foundation of China(Nos.11375195,11375263,and 11105143)the project of National Magnetic Confinement Fusion Energy Development Research(No.2013GB104003)
文摘A conventional multi-channel pulse amplitude analyzer acquires single energy spectrum,but provides no information on its tendency with time.To address the limitation,we propose a scheme of time-sharing multichannel pulse amplitude analyzer(TSMCA).A dual-port random access memory is divided into two storage spaces,one for current energy spectrum data acquisition and another for previous energy spectrum data storage.The two tasks can be performed simultaneously,and the time-related variation tendency of energy spectrum can be obtained.A prototype system of TSMCA is designed.It performs nicely,with maximum channel number of 4096 in capacity of 2^(32)/Ch,minimal time-sharing slice of 25 ms,the differential nonlinearity of <1.5%,and the integral nonlinearity of <0.3%.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金The Open Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA under contract No.LMEB201701
文摘There are well-established chemical and turbidity anomalies in the plumes occurring vicinity of hydrothermal vents, which are used to indicate their existence and locations. We here develop a small, accurate multi-channel chemical sensor to detect such anomalies which can be used in deep-sea at depths of more than 4 000 m. The design allowed five all-solid-state electrodes to be mounted on it and each (apart from one reference electrode) could be changed according to chemicals to be measured. Two experiments were conducted using the chemical sensors. The first was a shallow-sea trial which included sample measurements and in situ monitoring. pH, Eh, CO3^2- and SO4^2- electrodes were utilized to demonstrate that the chemical sensor was accurate and stable outside the laboratory. In the second experiment, the chemical sensor was integrated with pH, Eh, CO3^2- and H2S electrodes, and was used in 29 scans of the seabed along the Southwest Indian Ridge (SWIR) to detect hydrothermal vents, from which 27 sets of valid data were obtained. Hydrothermal vents were identified by analyzing the chemical anomalies, the primary judging criteria were decreasing voltages of Eh and H2S, matched by increasing voltages of pH and CO3^2- . We proposed that simultaneous detection of changes in these parameters will indicate a hydrothermal vent. Amongst the 27 valid sets of data, five potential hydrothermal vents were targeted using the proposed method. We suggest that our sensors could be widely employed by marine scientists.
基金supported by the National Key R&D Pro-gram of China under Grant 2016YFB0402501in part by the Natural Science Foundation of China under grant 61605112Open Fund of IPOC under grant BUPT
文摘We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.
文摘Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.
基金This work was performed at Alenia Spazio,Rome,Italy.It was a part of the cooperation project between Alenia Spazio and University of Electronic Science and Technology of China,Chengdu,China
文摘In this paper, a new maximum likelihood (ML) classification algorithm is proposed to classify the multi-look polarimetric synthetic aperture radar (SAR) imagery. Experimental results with the NASA/JPL airborne L-band polarimetric SAR data demonstrate the effectiveness of the new algorithm. Furthermore, when using the algorithm in the classifications with subsets of the multi-look polarimetric SAR data, the polarization-channel optimization for the terrain type classification is implemented.
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
文摘Wireless mesh networking (WMN) is an emerging technology that enables multihop wireless connectivity to areas where wiring or installing cables is difficult or expensive. Multicast is a form of communication that delivers information from a source to a group of destinations. In a single-channel WMN, all nodes share and communicate with each other via the same channel. In such a network, the throughput capacity of multicast degrades significantly as the network size increases. A critical factor that contributes to this rapid degradation is the co-channel interference in single-channel WMNs. The major advantage of WMN is that power is not the major issue as compare to other wireless network like MANET, Sensor etc. Hence Power can be optimally utilized in WMN to increase throughput and total network efficiency. In this paper, we propose a channel assignment algorithm for multicast based on high channel capacity with minimum interference. This scheme usesall overlapping and non overlapping channel for the channel assignment. By this scheme we provide better performance in terms of average packet delivery ratio, average throughput and average end to end delay with respect to multichannel multicast channel assignment schemes.
基金supported by the National High-Tech.R&D Program of China(the National 863 plans projects,Grant No.2007AA03Z352)
文摘Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP.
基金supported by the National Natural Science Foundation of China,No.60672001Special Fund of Education Department of Shaanxi Province,China,No.05JC03
文摘The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice sig- nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen- cy analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis- tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.