Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna...Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.展开更多
Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and short...Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.展开更多
This study seeks to isolate a select group of landscape metrics particularly well-suited for describing the Hani Terrace in southwest of China.We examined the response of 47 landscape metrics to a large range of image...This study seeks to isolate a select group of landscape metrics particularly well-suited for describing the Hani Terrace in southwest of China.We examined the response of 47 landscape metrics to a large range of imagery grain sizes.Based on a correlation analysis,the original 47 metrics were placed into 21 groups such that all metrics within a group were strongly correlated with each other with a value of more than 0.9,and were represented by a single descriptor.Using these cross-sectional metrics in the context of principal components analysis,we found that five factors explained almost 93% of the total variation in the landscape pattern.The highest loadings for these five factors were the Splitting index (SPLIT),Patch area distribution (AREA_CV),Shannon's diversity index (SHDI),Euclidean nearest neighbor distance distribution (ENN_AM),and Total core area (TCA),respectively.Considering the real landscape,we added the Patch fractal dimension distribution (FRAC_MN) as the sixth landscape pattern metric.As the scale effect of landscape pattern metrics we design to investigate how a suite of commonly use landscape metrics respond to changing grain size.Based on the anlasis,we determined that the best domain of scale to characterise the Hani Terrace pattern metrics is between 40m and 45m.Through the fractal method,we found that the characteristic scale of the Hani Terrace is the same as the scale domain of metrics,among the 40m and 45m.We suggest that the majority of the patterns in the Hani Terrace landscapes,indeed for all those in southwest China,can be described effectively with these six metrics.展开更多
The landscape pattern of Beijing wetlands has undergone a significant change as a result of natural and artificial elements.Supported by remote sensing and GIS technology,using multi-temporal TM images from 1984 to 20...The landscape pattern of Beijing wetlands has undergone a significant change as a result of natural and artificial elements.Supported by remote sensing and GIS technology,using multi-temporal TM images from 1984 to 2008 in Beijing,this paper analyzed the dynamic characteristics of wetlands landscape pattern through selected typical indices including patch area,patch average area,fractal dimension index,diversity,dominance,contagion indices and the spatial centroids of each wetlands type were calculated.Finally,the paper explored the evolution mode and driving factors of wetland landscape pattern.The results were obtained as follows:the total wetland area increased during the period 1984-1996,then decline from 1996 to 2004.The wetland area in 1994 accounted for only 47.37% of that in 2004.The proportion of artificial wetland area was larger than that of natural wetland.The proportion of reservoir wetland was 33.50% to 53.73% and had the maximum average area.pond and paddy field wetland type with the least average area accounted for 16.46% to 45.09% of the total wetland area.The driving forces of the natural river wetland were mainly natural elements;its fractal dimension index was greater than the others.The Shannon diversity index of wetland landscape increased from 1.11 in 1992 to 1.34 in 2004,indicating that the difference between proportions of each wetland type decreased and areas of each wetland type were evenly distributed.The contagion index went down from 65.59 to 58.41,indicating that the connectivity degraded.Miyun Reservoir had the largest area and its area change had a great impact on the location of the centroid.Wetland resources degenerated gradually from the joint effects of natural and artificial factors.During the period 2006-2008,the precipitation increased and the drought condition was relieved.The government implemented series of positive policies to save water resources,and the wetland area increased.展开更多
基金financially supported by National Natural Science Foundation of China(Grant No. 51179006)China National Funds for Distinguished Young Scientists (Grant No.51125035)+2 种基金National Science Foundation for Innovative Research Group (Grant No. 51121003)the Program for New Century Excellent Talents in University (NECT-10-0235)the Fok Ying Tung Foundation (Grant No. 132009)
文摘Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.
基金supported by the National Natural Science Foundation of China [Grant number 41371176]the Fundamental Research Funds for the Central Universities[Grant number lzujbky_2017_it91]
文摘Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.
基金National Public Benefit(Environmental) Research Foundation of China(201009020)National Natural Science Foundation of China(3120037641201580)
文摘This study seeks to isolate a select group of landscape metrics particularly well-suited for describing the Hani Terrace in southwest of China.We examined the response of 47 landscape metrics to a large range of imagery grain sizes.Based on a correlation analysis,the original 47 metrics were placed into 21 groups such that all metrics within a group were strongly correlated with each other with a value of more than 0.9,and were represented by a single descriptor.Using these cross-sectional metrics in the context of principal components analysis,we found that five factors explained almost 93% of the total variation in the landscape pattern.The highest loadings for these five factors were the Splitting index (SPLIT),Patch area distribution (AREA_CV),Shannon's diversity index (SHDI),Euclidean nearest neighbor distance distribution (ENN_AM),and Total core area (TCA),respectively.Considering the real landscape,we added the Patch fractal dimension distribution (FRAC_MN) as the sixth landscape pattern metric.As the scale effect of landscape pattern metrics we design to investigate how a suite of commonly use landscape metrics respond to changing grain size.Based on the anlasis,we determined that the best domain of scale to characterise the Hani Terrace pattern metrics is between 40m and 45m.Through the fractal method,we found that the characteristic scale of the Hani Terrace is the same as the scale domain of metrics,among the 40m and 45m.We suggest that the majority of the patterns in the Hani Terrace landscapes,indeed for all those in southwest China,can be described effectively with these six metrics.
基金Technology Plan Project of Beijing,No.D08040600580801International S&T Cooperation Project,No.2010DFA92400Project of Beijing Municipal Commission of Education,No.115304535
文摘The landscape pattern of Beijing wetlands has undergone a significant change as a result of natural and artificial elements.Supported by remote sensing and GIS technology,using multi-temporal TM images from 1984 to 2008 in Beijing,this paper analyzed the dynamic characteristics of wetlands landscape pattern through selected typical indices including patch area,patch average area,fractal dimension index,diversity,dominance,contagion indices and the spatial centroids of each wetlands type were calculated.Finally,the paper explored the evolution mode and driving factors of wetland landscape pattern.The results were obtained as follows:the total wetland area increased during the period 1984-1996,then decline from 1996 to 2004.The wetland area in 1994 accounted for only 47.37% of that in 2004.The proportion of artificial wetland area was larger than that of natural wetland.The proportion of reservoir wetland was 33.50% to 53.73% and had the maximum average area.pond and paddy field wetland type with the least average area accounted for 16.46% to 45.09% of the total wetland area.The driving forces of the natural river wetland were mainly natural elements;its fractal dimension index was greater than the others.The Shannon diversity index of wetland landscape increased from 1.11 in 1992 to 1.34 in 2004,indicating that the difference between proportions of each wetland type decreased and areas of each wetland type were evenly distributed.The contagion index went down from 65.59 to 58.41,indicating that the connectivity degraded.Miyun Reservoir had the largest area and its area change had a great impact on the location of the centroid.Wetland resources degenerated gradually from the joint effects of natural and artificial factors.During the period 2006-2008,the precipitation increased and the drought condition was relieved.The government implemented series of positive policies to save water resources,and the wetland area increased.