The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and phys...Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.展开更多
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Efficiency and precision in prediction of Chlorophyll-a using this model is still a pandemic among researchers, due to the natural conditions in ocean water systems itself, which involved chemical, biological and physical processes and interaction among them may affect the model performance drastically. Thus, to overcome this problem as well as to improve the strength of MLR, we proposed a hybrid approach, i.e., an Artificial Neural Network to the MLR coins as Artificial Neural Network-Multiple Linear Regression (ANN-MLR). To investigate the performance of the proposed model, we compared Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and proposed hybrid Artificial Neural Network and Multiple Linear Regression (ANN-MLR) in the prediction of chlorophyll-a (chl-a) concentration by statistical measurement which are MSE and MAE. Achieving our objectives of study, we used 4 parameters, i.e. temperature (°C), pH, salinity (ppt), DO (ppm) at the Offshore Kuala Terengganu, Terengganu, Malaysia. The results showed that our proposed model can improve the performance of the model as compared to ANN and MLR due to small errors generated, error reduced, and increased the correlation coefficient for all parameters in both MSE and MAE, respectively. Thus, this result indicated that our proposed model is efficient, precise and almost perfect correlation as compared to ANN and MLR.