Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf...Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.展开更多
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c...Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.展开更多
Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Un...Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.展开更多
This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It sho...This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It shows that the asymmetry of interactions has a great effect on the consensus. Especially, when the interactions are dominant from higher- to lower-degree nodes, both the convergence speed and the robustness to communication delay are enhanced.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based ...Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.展开更多
Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each o...Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.展开更多
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
基金Sponsored by the Project of Multi Modal Monitoring Information Learning Fusion and Health Warning Diagnosis of Wind Power Transmission System(Grant No.61803329)the Research on Product Quality Inspection Method Based on Time Series Analysis(Grant No.201703A020)the Research on the Theory and Reliability of Group Coordinated Control of Hydraulic System for Large Engineering Transportation Vehicles(Grant No.51675461).
文摘Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.
基金Supported by the National Natural Science Foundation of China(No.61602191,61672521,61375037,61473291,61572501,61572536,61502491,61372107,61401167)the Natural Science Foundation of Fujian Province(No.2016J01308)+3 种基金the Scientific and Technology Funds of Quanzhou(No.2015Z114)the Scientific and Technology Funds of Xiamen(No.3502Z20173045)the Promotion Program for Young and Middle aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-PY418,ZQN-YX403)the Scientific Research Funds of Huaqiao University(No.16BS108)
文摘Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin.
基金Project supported by the Youth Science Funds of Shandong Academy of Sciences,China(Grant No.2014QN032)
文摘Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775060 and 10805033)the Doctoral Education Foundation of National Education Committeethe Natural Science Foundation of Gansu Province
文摘This paper studies consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is deter:mined by the relative degree of the involved nodes. It shows that the asymmetry of interactions has a great effect on the consensus. Especially, when the interactions are dominant from higher- to lower-degree nodes, both the convergence speed and the robustness to communication delay are enhanced.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
文摘Systems using numerous cameras are emerging in many fields due to their ease of production and reduced cost, and one of the fields where they are expected to be used more actively in the near future is in image-based rendering (IBR). Color correction between views is necessary to use multi-view systems in IBR to make audiences feel comfortable when views are switched or when a free viewpoint video is displayed. Color correction usually involves two steps: the first is to adjust camera parameters such as gain, brightness, and aperture before capture, and the second is to modify captured videos through image processing. This paper deals with the latter, which does not need a color pattern board. The proposed method uses scale invariant feature transform (SIFT) to detect correspondences, treats RGB channels independently, calculates lookup tables with an energy-minimization approach, and corrects captured video with these tables. The experimental results reveal that this approach works well.
基金This work was supported by the Competitive Research Fund of The University of Aizu,Japan.
文摘Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.