The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo...The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.展开更多
A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these traine...A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these trained SVM models is done to signals of spot welding. It is shown from effect of different SVM models that these models with different inputs. In detection of defects, these models with inputs including sound signal have a high percentage of accuracy, the detection accuracy of these models with inputs including voltage signal will reduce. So the SVM models based on fractal dimensions of sound are some optimal nondestructive detection ones. At last a comparison between SVM detection model and ANNS detection model is researched which indicates that SVM is a more effective measure than Artificial neural networks in detection of nugget size defects during spot welding.展开更多
We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both sp...We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.展开更多
The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundan...The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.展开更多
In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observa...In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observations (or instances) whose category membership is known. SVM (support vector machines) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes fon^as the output, making it a non-probabilistic binary linear classifier. In pattern recognition problem, the selection of the features used for characterization an object to be classified is importance. Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, impticitly perform a nonlinear mapping 4~ of the input data in Rainto a high-dimensional feature space H. Cover's theorem states that if the transformation is nonlinear and the dimensionality of the feature space is high enough, then the input space may be transformed into a new feature space where the patterns are linearly separable with high probability.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
Summary of typical information fusion systems, synthesis analysis of Robot Soccer’s architecture, recognition of its characteristic and key technique are given. The result is prompted that Robot Soccer can be treated...Summary of typical information fusion systems, synthesis analysis of Robot Soccer’s architecture, recognition of its characteristic and key technique are given. The result is prompted that Robot Soccer can be treated as a platform of the information fusion.展开更多
This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Informa...This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.展开更多
Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digit...Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation,...We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.展开更多
This paper aims at exploring a digital image integration technique for multi-geoscience in formation dominated by airborne gamma-ray data, especially deeply discussing the method to secondly develop those aerial data ...This paper aims at exploring a digital image integration technique for multi-geoscience in formation dominated by airborne gamma-ray data, especially deeply discussing the method to secondly develop those aerial data by combining digital image processing system with the colored mapping system. Utilizing this technique , we have analyzed the geologic environment of uranium mineralization of Lianshanguan area > Liaoning Province, provided some important background information for further seeking of minerals. Meanwhile , experimental studies have been made to predict uranium mineralization , and evident results aquired. Practise shows that this new technique offers prospecting significance for mineral seeking and great practical value in survey of uranium resources.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Sub...For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.展开更多
基金support provided by the National Natural Sciences Foundation of China(No.41771419)Student Research Training Program of Southwest Jiaotong University(No.191510,No.182117)。
文摘The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.
基金supported by National Natural Science Foundation of China (No.50575159)Science Foundation of Ministry of Education of China (No.106049)+1 种基金Doctoral Foundation of Ministry of Education of China (No.20060056058)and Tianjin Municipal Natural Science Foundation of China (No.06YFJMJC03400).
文摘A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these trained SVM models is done to signals of spot welding. It is shown from effect of different SVM models that these models with different inputs. In detection of defects, these models with inputs including sound signal have a high percentage of accuracy, the detection accuracy of these models with inputs including voltage signal will reduce. So the SVM models based on fractal dimensions of sound are some optimal nondestructive detection ones. At last a comparison between SVM detection model and ANNS detection model is researched which indicates that SVM is a more effective measure than Artificial neural networks in detection of nugget size defects during spot welding.
基金The National Natural Science Foundation of China under contract No.61671481the Qingdao Applied Fundamental Research under contract No.16-5-1-11-jchthe Fundamental Research Funds for Central Universities under contract No.18CX05014A
文摘We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.
文摘The multi-sensors fusion refers to the synergistic combination of sensory data from multiple sensors to provide more accurate and reliable information. The potential benefits of the Fusion are multi-sensors’ redundancy and extra information acquired. The fusion of redundant information can reduce the overall uncertainty and thus helps to provide information specified more precisely. Several sensors providing redundant information can also be used to increase reliability in the case of error, omission or failure of sensors. The combination operators are exponential and are more complex in terms of calculation;the Dempster-Shafer operator is exponential for more than three (3) information sources?[1] [2]. Our work focuses on the definition of another formulation of this operation, and puts it in a matrix form to illuminate the computational complexity, more precision guaranty and a minimal execution time. We propose to use each information source in a form of a matrix, which contains 0 value in lines that do not contain the masses (m(Ai) = 0) or once m(Ai) is not null (m(Ai) ≠ 0). The use of this expressed matrix attempts to ameliorate Dempster-Shafer operator via initialing either a criterion or criteria sources’ solution, increasing the efficiency of the Dempster-Shafer operator and facilitates the combination among the sources. We evaluate our approach by conducting a case study for showing the effectiveness of this matrix.
文摘In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observations (or instances) whose category membership is known. SVM (support vector machines) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes fon^as the output, making it a non-probabilistic binary linear classifier. In pattern recognition problem, the selection of the features used for characterization an object to be classified is importance. Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, impticitly perform a nonlinear mapping 4~ of the input data in Rainto a high-dimensional feature space H. Cover's theorem states that if the transformation is nonlinear and the dimensionality of the feature space is high enough, then the input space may be transformed into a new feature space where the patterns are linearly separable with high probability.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
文摘Summary of typical information fusion systems, synthesis analysis of Robot Soccer’s architecture, recognition of its characteristic and key technique are given. The result is prompted that Robot Soccer can be treated as a platform of the information fusion.
文摘This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all three filters and yields a more accurate estimate than the extended information filter.
基金Supported by the National Natural Science Foundation of China(No.61304017,11372309)Key Technology Development Project of Jilin Province(No.20150204074GX)+1 种基金the Project Development Plan of Science and Technology(No.20150520111zh)the Provincial Special Funds Project of Science and Technology Cooperation(No.2014SYHZ0004)
文摘Altitude regulation is a fundamental problem in UAV(unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance.However,data from altitude sensors may be unstable by interference.A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment.Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter(SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground.This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.
文摘We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.
基金Project supported by International Atom Energy Agency.
文摘This paper aims at exploring a digital image integration technique for multi-geoscience in formation dominated by airborne gamma-ray data, especially deeply discussing the method to secondly develop those aerial data by combining digital image processing system with the colored mapping system. Utilizing this technique , we have analyzed the geologic environment of uranium mineralization of Lianshanguan area > Liaoning Province, provided some important background information for further seeking of minerals. Meanwhile , experimental studies have been made to predict uranium mineralization , and evident results aquired. Practise shows that this new technique offers prospecting significance for mineral seeking and great practical value in survey of uranium resources.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金Supported by National Natural Science Foundation of China (No.60874063)Key Laboratory of Electronics Engineering,College of Heilongjiang Province (No.DZZD2010-5),and Science and Automatic Control Key Laboratory of Heilongjiang University
文摘For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.