Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma...Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.展开更多
Considering research on multi-objective optimization for reliability and performance suffering cost constraints in digital circuits,an improved multi-objective optimization algorithm based on performance and reliabili...Considering research on multi-objective optimization for reliability and performance suffering cost constraints in digital circuits,an improved multi-objective optimization algorithm based on performance and reliability was proposed to solve the problem of discrete system resources configuration in this paper. This algorithm used the particle-swarm optimization( PSO) to evaluate the tradeoffs configuration of the system resources between reliability and performance and proved the feasibility through the simulation.Finally, the information of resources configuration from optimization algorithm was used to effectively guide the system design so as to mitigate soft errors caused by single event effect( SEE).展开更多
The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersource...The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[展开更多
Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design...Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.展开更多
This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is ...This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.展开更多
In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ...In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.展开更多
In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method...In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method.Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline,nonlinear blind source separation is applied.In nonlinear blind source separation,the odd polynomials of higher order are used to fit the nonlinear transformation function,and the mutual information of separation signals is used as the evaluation function.Then the parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm,thus the source signals can be separated from the mixed signals.The two-phase flow signals with noise which are obtained from upstream and downstream sensors are respectively processed by nonlinear blind source separation method so that the noise can be effectively removed.Therefore,based on these noise-suppressed signals,the distinct curves of cross correlation function and the transit times are obtained,and then the velocities of two-phase flow can be accurately calculated.Finally,the simulation experimental results are given.The results have proved that this method can meet the measurement requirements of two-phase flow velocity.展开更多
To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The p...To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.展开更多
Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including sour...Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.展开更多
The linked simulation-optimization model can be used for solving a complex groundwater pollution source identification problem. Advanced simulators have been developed and successfully linked with numerous optimizatio...The linked simulation-optimization model can be used for solving a complex groundwater pollution source identification problem. Advanced simulators have been developed and successfully linked with numerous optimization algorithms for identification of groundwater pollution sources. However, the identification of pollution sources in a groundwater aquifer using linked simulation-optimization model has proven to be computationally expensive. To overcome this computational burden, an approximate simulator, the artificial neural network (ANN) model can be used as a surrogate model to replace the complex time-consuming numerical simulation model. However, for large-scale aquifer system, the performance of the ANN-based surrogate model is not satisfactory when a single ANN model is used to predict the concentration at different observation locations. In such a situation, the model efficiency can be enhanced by developing separate ANN model for each of the observation locations. The number of ANN models is equal to the number of observation wells in the aquifer. As a result, the complexity of the ANN-based simulation-optimization model will be related to the number of observation wells. Thus, this study used a modified formulation to find out the optimal numbers of observation wells which will eventually reduce the computational time of the model. The performance of the ANN-based simulation-optimization model is evaluated by identifying the groundwater pollutant sources of a hypothetical study area. The limited evaluation shows that the model has the potential for field application.展开更多
Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency ...Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.展开更多
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the und...Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.展开更多
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ...Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively.展开更多
Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closi...Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.展开更多
Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenari...Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform mesh. The RI value of each grid node is calculated on the basis of the occurrence probability and normalized concentrations of each leakage scenario. A high RI value indicates that a sensor at a grid node has a high chance of detecting gas concentrations in different leakage scenarios. This situation is beneficial for leakage monitoring and STE. The methods of similarity redundancy detection and the maximization of sensor RI detection are applied to determine the sequence of sensor locations. This study reveals that the RI detection of the optimal sensor layout with eight sensors exceeds that of the typical layout with 12 sensors. In addition, STE with the optimized placement sequence of the sensor layout is numerically simulated. The statistical results of each scenario with various numbers of sensors reveal that STE is affected by sensor number and scenarios(leakage locations and winds). In most scenarios, appropriate STE results can be retained under the optimal sensor layout even with four sensors. Eight or more sensors are advised to improve the performance of STE in all scenarios. Moreover, the reliability of the STE results in each scenario can be known in advance with a specific number of sensors. Such information thus provides a reference for emergency rescue.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the reco...This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
基金Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA28040000,XDA28120000Natural Science Foundation of Shandong Province,Grant No.ZR2021MF094+2 种基金Key R&D Plan of Shandong Province,Grant No.2020CXGC010804Central Leading Local Science and Technology Development Special Fund Project,Grant No.YDZX2021122Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta,Grant No.2022SZX11。
文摘Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.
文摘Considering research on multi-objective optimization for reliability and performance suffering cost constraints in digital circuits,an improved multi-objective optimization algorithm based on performance and reliability was proposed to solve the problem of discrete system resources configuration in this paper. This algorithm used the particle-swarm optimization( PSO) to evaluate the tradeoffs configuration of the system resources between reliability and performance and proved the feasibility through the simulation.Finally, the information of resources configuration from optimization algorithm was used to effectively guide the system design so as to mitigate soft errors caused by single event effect( SEE).
文摘The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[
基金Project supported by the National Natural Science Foundation of China (No.30571450)the Foundation for Young Professors of Jimei University of Xiamen,China
文摘Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.
基金supported by National Natural Science Foundation of China (No. 60675043)Natural Science Foundation of Zhejiang Province of China (No. Y1090426, No. Y1090956)Technical Project of Zhejiang Province of China (No. 2009C33045)
文摘This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.
基金supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network (XTCX202001)National Natural Science Foundation of China (52077061)。
文摘In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.
基金Supported by the National Natural Science Foundation of China (50736002,61072005)the Youth Backbone Teacher Project of University,Ministry of Education,China+1 种基金the Scientific Research Foundation of the Department of Science and Technology of Liaoning Province (20102082)the Changjiang Scholars and Innovative Team Development Plan (IRT0952)
文摘In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method.Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline,nonlinear blind source separation is applied.In nonlinear blind source separation,the odd polynomials of higher order are used to fit the nonlinear transformation function,and the mutual information of separation signals is used as the evaluation function.Then the parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm,thus the source signals can be separated from the mixed signals.The two-phase flow signals with noise which are obtained from upstream and downstream sensors are respectively processed by nonlinear blind source separation method so that the noise can be effectively removed.Therefore,based on these noise-suppressed signals,the distinct curves of cross correlation function and the transit times are obtained,and then the velocities of two-phase flow can be accurately calculated.Finally,the simulation experimental results are given.The results have proved that this method can meet the measurement requirements of two-phase flow velocity.
基金supported by the IAEA Coordinate Research Project F1.30.15 Conceptual Development of Steady-State Compact Fusion Neutron Sources,the Knowledge Innovation Projects of Chinese Academy of Sciences(No.KJCX2-YW-N37)National Magnetic Confinement Fusion Science Program of China(No.2011GB114004)
文摘To further investigate the fusion neutron source based on a gas dynamic trap (GDT), characteristics of the GDT were analyzed and physics analyses were made for a fusion neutron source based on the GDT concept. The prior design of a GDT-based fusion neutron source was optimized based on a refreshed understanding of GDT operation. A two-step progressive development route of a GDT-based fusion neutron source was suggested. Potential applications of GDT are discussed. Preliminary analyses show that a fusion neutron source based on the GDT concept is suitable for plasma-material interaction research, fusion material and subcomponent testing, and capable of driving a proof-of-principle fusion fission hybrid experimental facility.
基金This work was supported by Major Science and Technology Program for Water Pollution Control and Treatment(No.2015ZX07406005)Also thanks to the National Natural Science Foundation of China(No.41430643 and No.51774270)the National Key Research&Development Plan(No.2016YFC0501109).
文摘Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results.
文摘The linked simulation-optimization model can be used for solving a complex groundwater pollution source identification problem. Advanced simulators have been developed and successfully linked with numerous optimization algorithms for identification of groundwater pollution sources. However, the identification of pollution sources in a groundwater aquifer using linked simulation-optimization model has proven to be computationally expensive. To overcome this computational burden, an approximate simulator, the artificial neural network (ANN) model can be used as a surrogate model to replace the complex time-consuming numerical simulation model. However, for large-scale aquifer system, the performance of the ANN-based surrogate model is not satisfactory when a single ANN model is used to predict the concentration at different observation locations. In such a situation, the model efficiency can be enhanced by developing separate ANN model for each of the observation locations. The number of ANN models is equal to the number of observation wells in the aquifer. As a result, the complexity of the ANN-based simulation-optimization model will be related to the number of observation wells. Thus, this study used a modified formulation to find out the optimal numbers of observation wells which will eventually reduce the computational time of the model. The performance of the ANN-based simulation-optimization model is evaluated by identifying the groundwater pollutant sources of a hypothetical study area. The limited evaluation shows that the model has the potential for field application.
基金the National Natural Science Foundation of China(NSFC)(61675021)the Fundamental Research Funds for the Central Universities(2018CX01025).
文摘Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.
基金This Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20122304120011)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.HEUCFR1119)
文摘Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
基金supported by the National Natural Science Foundation of China(71690233)
文摘Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively.
文摘Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.
基金supported by National Natural Science Foundation of China (61988101)National Natural Science Fund for Distinguished Young Scholars (61725301)Fundamental Research Funds for the Central Universities。
文摘Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform mesh. The RI value of each grid node is calculated on the basis of the occurrence probability and normalized concentrations of each leakage scenario. A high RI value indicates that a sensor at a grid node has a high chance of detecting gas concentrations in different leakage scenarios. This situation is beneficial for leakage monitoring and STE. The methods of similarity redundancy detection and the maximization of sensor RI detection are applied to determine the sequence of sensor locations. This study reveals that the RI detection of the optimal sensor layout with eight sensors exceeds that of the typical layout with 12 sensors. In addition, STE with the optimized placement sequence of the sensor layout is numerically simulated. The statistical results of each scenario with various numbers of sensors reveal that STE is affected by sensor number and scenarios(leakage locations and winds). In most scenarios, appropriate STE results can be retained under the optimal sensor layout even with four sensors. Eight or more sensors are advised to improve the performance of STE in all scenarios. Moreover, the reliability of the STE results in each scenario can be known in advance with a specific number of sensors. Such information thus provides a reference for emergency rescue.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
基金the deanship of Scientific Research at Jouf University for founding this work through research grant no(DSR2020-02-387).https://www.ju.edu.sa/.
文摘This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.