Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic mode...Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.展开更多
This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre...This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre-allocation for burst transmissions.We first propose a novel iterative algorithm to jointly optimize subcarrier and power allocation,so as to maximize the sum rate of the uplink transmission in the multiUAV OFDM system.The key idea behind our solution is converting the nontrivial allocation problem into a weighted mean square error(MSE) problem.By this means,the allocation problem can be solved by the alternating optimization method.Besides,aiming at a lower-complexity solution,we propose a heuristic allocation scheme,where subcarrier allocation and transmit power allocation are separately optimized.In the heuristic scheme,closedform solution can be obtained for power allocation.Simulation results demonstrate that in the presence of stretched subcarrier resource,the proposed iterative joint optimization algorithm can significantly outperform the heuristic scheme,offering a higher sum rate.展开更多
A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and at...A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.展开更多
Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controllin...Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controlling multi-UAVs is studied to reach multi-waypoints simultaneously under the view of visual navigation technology. A model based on the stable-shortest pythagorean-hodograph (PH) curve is established, which could not only satisfy the demands of visual navigation and control law, but also be easy to compute. Based on the model, a planning algorithm to guide multi-UAVs to reach multi-waypoints at the same time without collisions is developed. The simulation results show that the paths have shorter distance and smaller curvature than traditional methods, which could help to avoid collisions.展开更多
基金supported by the Natural Science Foundation of China (Grant no.60604009)Aeronautical Science Foundation of China (Grant no.2006ZC51039,Beijing NOVA Program Foundation of China (Grant no.2007A017)+1 种基金Open Fund of the Provincial Key Laboratory for Information Processing Technology,Suzhou University (Grant no KJS0821)"New Scientific Star in Blue Sky"Talent Program of Beihang University of China
文摘Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.
基金supported by China NSF Grants(61631020)the Fundamental Research Funds for the Central Universities(NP2018103,NE2017103,NC2017003)
文摘This paper investigates subcarrier and power allocation in a multi-UAV OFDM system.The study considers a practical scenario,where certain subcarriers are unavailable for dynamic subcarrier allocation,on account of pre-allocation for burst transmissions.We first propose a novel iterative algorithm to jointly optimize subcarrier and power allocation,so as to maximize the sum rate of the uplink transmission in the multiUAV OFDM system.The key idea behind our solution is converting the nontrivial allocation problem into a weighted mean square error(MSE) problem.By this means,the allocation problem can be solved by the alternating optimization method.Besides,aiming at a lower-complexity solution,we propose a heuristic allocation scheme,where subcarrier allocation and transmit power allocation are separately optimized.In the heuristic scheme,closedform solution can be obtained for power allocation.Simulation results demonstrate that in the presence of stretched subcarrier resource,the proposed iterative joint optimization algorithm can significantly outperform the heuristic scheme,offering a higher sum rate.
基金supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China(NSFC)(61321002)National Science Fund for Distinguished Young Scholars(60925011)+2 种基金Projects of Major International(Regional)Joint Research Program NSFC(61120106010)Beijing Education Committee Cooperation Building Foundation Project,Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)Chang Jiang Scholars Program and National Natural Science Foundation of China(61203078)
基金partially sponsored by the Fundamental Research Funds for the Central Universities(No.3102015ZY092)
文摘A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.
文摘Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controlling multi-UAVs is studied to reach multi-waypoints simultaneously under the view of visual navigation technology. A model based on the stable-shortest pythagorean-hodograph (PH) curve is established, which could not only satisfy the demands of visual navigation and control law, but also be easy to compute. Based on the model, a planning algorithm to guide multi-UAVs to reach multi-waypoints at the same time without collisions is developed. The simulation results show that the paths have shorter distance and smaller curvature than traditional methods, which could help to avoid collisions.