期刊文献+
共找到224,674篇文章
< 1 2 250 >
每页显示 20 50 100
基于Multi-Agent的无人机集群体系自主作战系统设计
1
作者 张堃 华帅 +1 位作者 袁斌林 杜睿怡 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1273-1286,共14页
针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;... 针对无人集群自主作战体系设计中的关键问题,提出基于Multi-Agent的无人集群自主作战系统设计方法。建立无人集群各节点的Agent模型及其推演规则;对于仿真系统模块化和通用化的需求,设计系统互操作式接口和无人集群自主作战的交互关系;开展无人集群系统仿真推演验证。仿真结果表明,所提设计方案不仅能够有效开展并完成自主作战网络生成-集群演化-效能评估的全过程动态演示验证,而且能够通过重复随机试验进一步评估无人集群的协同作战效能,最后总结了集群协同作战的策略和经验。 展开更多
关键词 multi-AGENT 无人集群 体系设计 协同作战
下载PDF
基于Multi-Agent的水电站变压器故障诊断系统
2
作者 乔丹 马鹏 王琦 《自动化技术与应用》 2024年第7期58-61,65,共5页
为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断age... 为了精准、快速完成水电站变压器的故障诊断,设计基于Multi-Agent的水电站变压器故障诊断系统。变压器状态监控agent将检测到的变压器故障信息发送给系统管理agent,系统管理agent通过通信agent将变压器故障信息发送给变压器故障诊断agent,变压器故障诊断agent利用小波变换方法提取变压器故障特征,并将其作为IFOA-SVM模型输入,完成变压器故障分类后,获取变压器故障诊断结果,该结果通过通信agent显示给用户。实验表明,该系统可有效诊断变压器故障诊断,诊断成功率受系统故障信息丢失率的影响较小,诊断耗时、耗能小,并具有较高故障诊断成功率。 展开更多
关键词 multi-AGENT 水电站 变压器 故障诊断 小波变换
下载PDF
Multi-Granularity Neighborhood Fuzzy Rough Set Model on Two Universes
3
作者 Ju Wang Xinghu Ai Li Fu 《Journal of Intelligent Learning Systems and Applications》 2024年第2期91-106,共16页
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho... The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies. 展开更多
关键词 Fuzzy Set Two Universes multi-Granularity Rough Set multi-Granularity Neighborhood Fuzzy Rough Set
下载PDF
基于Multi-WHFPN与SimAM注意力机制的版面分割
4
作者 杨陈慧 周小亮 +2 位作者 张恒 孙政 业宁 《电子测量技术》 北大核心 2024年第1期159-168,共10页
作为OCR的预处理工作,版面分割技术越来越受到学术界和工业界重视。针对版面分割中遇到的检测速度慢、目标区域边界不准确以及细小目标易遗漏等问题,提出了YOLOv7-MSY模型。此模型首先借鉴残差连接思想,提出了Multi-WHFPN网络结构。它... 作为OCR的预处理工作,版面分割技术越来越受到学术界和工业界重视。针对版面分割中遇到的检测速度慢、目标区域边界不准确以及细小目标易遗漏等问题,提出了YOLOv7-MSY模型。此模型首先借鉴残差连接思想,提出了Multi-WHFPN网络结构。它采用可训练的权重参数,突出特征融合过程中特征重要性,并添加了小目标检测头,从而提升对小目标的检测性能;其次,引入SimAM注意力机制,可以在不增加额外参数的基础上在3D维度评估特征权重,以增强重要特征,抑制无效特征;最后,使用YEIOU来代替原模型中的定位损失函数,提升了模型的收敛速度与回归精度。在江苏省档案馆提供的数据集上进行实验对比,YOLOv7-MSY对目标区域边界检测更加敏感,对细小目标的检测效果更好。YOLOv7-MSY的mAP@.5达到了0.871,相较于原YOLOv7模型提高了7.84%。该模型的版面分割的效果优于其他类型的版面分割算法,具有良好的泛化性能,并且版面分割速度处于较高水平。 展开更多
关键词 版面分割 YOLOv7-MSY multi-WHFPN SimAM注意力机制 YEIOU
下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
5
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
下载PDF
联合物理层与MAC层的multi-TRP上行重叠传输处理机制
6
作者 景小荣 熊杰 +1 位作者 孙健 陈前斌 《通信学报》 EI CSCD 北大核心 2024年第8期110-124,共15页
针对非理想回程下现有协议难以有效处理多传输接收节点(multi-TRP)场景中多定时提前(multi-TA)导致的严重上行链路(UL)重叠传输问题,联合改进物理层复用技术和介质访问控制(MAC)令牌桶技术,提出了一种新型的UL重叠传输处理机制。该新型... 针对非理想回程下现有协议难以有效处理多传输接收节点(multi-TRP)场景中多定时提前(multi-TA)导致的严重上行链路(UL)重叠传输问题,联合改进物理层复用技术和介质访问控制(MAC)令牌桶技术,提出了一种新型的UL重叠传输处理机制。该新型机制通过改进物理层重叠信道识别流程、复用要求及复用规则,将物理层复用信息与重叠信息反馈至MAC层,并对MAC层令牌桶技术进行优化。通过仿真实验对所提机制与现有协议机制进行对比,结果表明,在逻辑时隙不可重叠和可重叠2种情形下,物理上行控制信道(PUCCH)实际复用数量性能平均提升了57.58%和49.40%,物理上行共享信道(PUSCH)实际可用资源数量性能平均提升了12.09%和26.03%;优先级最高逻辑信道实际占用资源数量性能平均提升了33.33%和45.48%。 展开更多
关键词 多传输接收节点 上行链路 重叠传输 信道复用 令牌桶
下载PDF
Contribution of GIS to Soil Landscape Mapping by Multi-Criteria Analysis Using Weighting: The Case of the Square Degrees of M’Bahiakro (Centre) and Daloa (Centre-West) in Ivory Coast
7
作者 Guy Fernand Yao Derving Baka +5 位作者 Nestor Kouman Yao Kouakou Bala Mamadou Ouattara Kouadio Amani Jean Lopez Essehi Brou Kouame Albert Yao-Kouame 《Open Journal of Geology》 CAS 2024年第1期101-116,共16页
As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations bas... As part of the drive to improve coffee and cocoa production in Ivory Coast, studies are carried out to identify soils that are favourable for these crops. It is therefore necessary to orientate soil investigations based on reliable criteria that best discriminate soil cover. With this in mind, this study is being carried out to help improve survey methods by mapping soil landscapes. It uses GIS and weighted multicriteria analysis. To do this, satellite images were processed and the geological map of the square degrees of M’Bahiakro and Daloa was reclassified. The results show that relief is the main factor in soil landscape differentiation, with respective weights of 0.58 and 0.67 for the forest and pre-forest zones. In contrast, the weight of geological formation in soil landscape differentiation remains low (0.05 for the forest zone and 0.07 for the pre-forest zone). The criteria used on the base of aggregation sum methods have made it possible to formulate soil landscape mapping prediction functions according to agro-ecological environments in the humid intertropical zone. This is essential for the orientation of soil survey work. Nevertheless, other comparative methods, such as the coding mapping method, could provide elements for discussion to validate the models. 展开更多
关键词 GIS multi-Criteria Analysis Soil Landscapes M’Bahiakro Daloa Ivory Coast
下载PDF
基于Anubis的Multi-GNSS观测质量评估与可视化表达
8
作者 董国桥 王友昆 +3 位作者 胡伟清 寸寿才 施明鲜 刘晨 《工程勘察》 2024年第7期40-43,共4页
为满足Multi-GNSS观测数据质量评估的需求,基于G-Nut/Anubis和MATLAB软件开发了多指标量化与可视化表达程序KMQC。该程序能够显著改善原生Anubis存在的交互性差和可视化性能低等问题,可便捷地输出BDS、GPS和GLONASS等系统的观测质量分... 为满足Multi-GNSS观测数据质量评估的需求,基于G-Nut/Anubis和MATLAB软件开发了多指标量化与可视化表达程序KMQC。该程序能够显著改善原生Anubis存在的交互性差和可视化性能低等问题,可便捷地输出BDS、GPS和GLONASS等系统的观测质量分析图表。本研究采集了KMCORS中3个基准站2022年7d的RNX3观测数据,对KMQC的性能进行测试。结果表明,该程序可高效输出CORS站的Multi-GNSS观测数据评估结果,并能够通过各型图表进行直观表达。因此,该软件能够显著降低多元GNSS观测数据的质量检核难度,可有效辅助质检部门及时监控CORS系统的运行健康度。 展开更多
关键词 multi-GNSS G-Nut/Anubis MATLAB 观测质量评估
下载PDF
Effect of Seasonal Variations on the Behavior of Flexible Pavements in Burkina Faso: Towards Alternating and Periodic Loading of Multi-Axle Heavy Goods Vehicles for Road Durability
9
作者 Kokoro Kobori Doua Allain Gnabahou Bouto Kossi Imbga 《Journal of Materials Science and Chemical Engineering》 2024年第6期24-42,共19页
Bituminous materials are heat-sensitive, and their mechanical properties vary with temperature. This variation in properties is not without consequences on the performance of flexible road structures under the repeate... Bituminous materials are heat-sensitive, and their mechanical properties vary with temperature. This variation in properties is not without consequences on the performance of flexible road structures under the repeated passage of multi-axles. This study determines the influence of seasonal variations on the rate of permanent deformation, the rut depth of flexible pavements and the effect of alternating loading of heavy goods vehicles following the temperature variations on the durability of roads. Thus, an ambient and pavement surface temperature measurement was carried out in 2022. The temperature profile at different layers of the modelled pavement, the evaluation of deformation rates and rutting depth were determined using several models. The results show that the permanent deformation and rutting rates are higher at the level of the bituminous concrete layer than at the level of the asphalt gravel layer because the stresses decrease from the surface to the depth of the pavement. On the other hand, the variations in these rates, permanent deformations and ruts between the hot and so-called cold periods are more pronounced in the bitumen gravel than in bituminous concrete, showing that gravel bitumen is more sensitive to temperature variations than bituminous concrete despite its higher rigidity. Of these results, we suggested a periodic and alternating loading of the different types of heavy goods vehicles. These loads consist of fully applying the WAEMU standards with a tolerance of 15% during periods of high and low temperatures. This regulation has increased 2 to 3 times in the durability of roadways depending on the type of heavy goods vehicle. 展开更多
关键词 PAVEMENT RUTTING Permanent Deformation multi-Axle Seasonal
下载PDF
Satellite Multi-Temporal Data and Cropping Pattern Approach for Green Gram Crop Management in the Lower Midland Zone IV and V in Kenya
10
作者 Kalekye Hilda Manzi Shadrack Ngene Joseph P. Gweyi-Onyango 《Advances in Remote Sensing》 2024年第2期41-71,共31页
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ... Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones. 展开更多
关键词 multi-TEMPORAL Cropping Patterns Spectral Signatures Landsat 8 CROP Identification
下载PDF
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
11
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-Task Learning
下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization
12
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 CLUSTERING multi-View Subspace Clustering Low-Rank Prior Sparse Regularization
下载PDF
Multi-Criteria Wildfire Risk Hazard Assessment in GIS Environment: Projection for the Future and Impact on RES Projects Installation Planning
13
作者 Aggelos Pallikarakis Flora Konstantopoulou 《Journal of Geoscience and Environment Protection》 2024年第5期242-265,共24页
It is alarming for the fact that Wildfires number, severity and consequently impact have significantly increased during the last years, an aftermath of the Climate Change. One of the most affected areas worldwide is M... It is alarming for the fact that Wildfires number, severity and consequently impact have significantly increased during the last years, an aftermath of the Climate Change. One of the most affected areas worldwide is Mediterranean, due to the unique combination of its type of vegetation and demanding climatic conditions. This research is focused on the Region of Epirus in Greece, an area with significant natural vegetation and a range of geomorphological aspects. In order to estimate the Wildfire Risk Hazard, several factors have been used: geomorphological (slope, aspect, elevation, TWI, Hydrographic network), social (Settlements and landfils, roads, overhead lines and substations), environmental (land cover) and climatic (Fire Weather Index). Through a multi-criteria decision analysis (MCDA) and an analytic hierarchy process (AHP) in a GIS environment, the Wildfire Risk Hazard has been estimated not only for current conditions but also for future projections for the near future (2031-2060) and the far future (2071-2100). The selected case study includes the potential impact of the Wildfires to the installed (or targeted to be installed) RES projects in the studied region. 展开更多
关键词 RES Projects Greece Epirus Analytic Hierarchy Process multi-Criteria Decision Analysis
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
14
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 Traffic Prediction Intelligent Traffic System multi-Head Attention Graph Neural Networks
下载PDF
Telecommunications and Energy Infrastructure Sharing: Technical and Socio-Economic Impact Analysis in a Multi-Operator Environment in Burundi
15
作者 Apollinaire Bigirimana Jérémie Ndikumagenge +2 位作者 Sami Tabbane Romeo Nibitanga Hassan Kibeya 《Journal of Computer and Communications》 2024年第10期94-111,共18页
The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same ... The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi. 展开更多
关键词 Infrastructure Sharing Mobile Telephony Energy multi-Operators Environment Technical and Socio-Economic Impact
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
16
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-Scale Feature Fusion
下载PDF
Multi-Agent模式下的城市暴雨内涝应急决策方法研究
17
作者 王莉 杨若昕 +2 位作者 曹景稳 景紫嫣 李佳欢 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期199-206,共8页
为厘清应对暴雨内涝灾害动态决策过程中决策主体、决策、决策方案等决策要素间的不确定关系,提出1种多主体(Multi-Agent)和贝叶斯决策网络(BDN)相结合的应急决策方法。首先分阶段构建“主体-任务”可视化网络,分析暴雨内涝灾害各应急阶... 为厘清应对暴雨内涝灾害动态决策过程中决策主体、决策、决策方案等决策要素间的不确定关系,提出1种多主体(Multi-Agent)和贝叶斯决策网络(BDN)相结合的应急决策方法。首先分阶段构建“主体-任务”可视化网络,分析暴雨内涝灾害各应急阶段的主要任务和参与的决策主体;在考虑到决策要素间的动态不确定性可能造成决策风险的前提下,运用Multi-Agent和BDN方法探究各决策要素间的影响关系,以便进行方案集优选。研究结果表明:该方法具有实用性和现实意义,研究结果可为城市暴雨内涝灾害的应急决策提供理论参考。 展开更多
关键词 城市暴雨内涝 贝叶斯决策网络 多主体应急决策 不确定关系 “主体-任务”互动网络
下载PDF
GIS-Based Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP) Techniques to Derive Flood Risks Management on Rice Productivity in Gishari Marshland
18
作者 Jean Nepo Nsengiyumva Emmanuel Nshimiyimana +7 位作者 Jean Marie Ntakirutimana Phocas Musabyimana Yvonne Akimana Fred Shema Set Niyitanga Séverin Hishamunda Callixte Musinga Mpamabara Eliezel Habineza 《Journal of Geoscience and Environment Protection》 2024年第3期222-249,共28页
Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodo... Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding. 展开更多
关键词 Multi Criteria Decision Analysis (MCDA) Analytical Hierarchy Analysis (AHA) GIS RS and DEM
下载PDF
轻量化的印刷电路板缺陷检测网络Multi-CR YOLO 被引量:1
19
作者 姜媛媛 蔡梦南 《电子测量与仪器学报》 CSCD 北大核心 2023年第11期217-224,共8页
针对印刷电路板表面缺陷目标小,检测精度低问题,设计了印刷电路板表面缺陷检测网络Multi-CR YOLO,满足实时检测速度的前提下,有效提高了检测精度。首先,由3个Multi-CR块组成的主干特征提取网络Multi-CR backbone对印刷电路板小目标缺陷... 针对印刷电路板表面缺陷目标小,检测精度低问题,设计了印刷电路板表面缺陷检测网络Multi-CR YOLO,满足实时检测速度的前提下,有效提高了检测精度。首先,由3个Multi-CR块组成的主干特征提取网络Multi-CR backbone对印刷电路板小目标缺陷进行特征提取。其次,SDDT-FPN特征融合模块使层级高的特征层向层级低的特征层进行特征融合,同时为小目标预测头YOLO Head-P3所在特征融合层加强特征融合,进一步增强低层特征层的表达能力。PCR模块加强主干特征提取网络与SDDT-FPN特征融合模块不同尺度的特征层的特征融合机制,且防止模块之间进行特征融合时信息丢失。C_(5)ECA模块负责自适应调节特征权重和自适应注意小目标缺陷信息的要求,进一步提高了特征融合模块的自适应特征提取能力。最后,3个YOLO-Head负责针对不同尺度的小目标缺陷进行预测。实验表明,Multi-CR YOLO网络模型检测mAP达到98.55%,模型大小为8.90 MB,达到轻量化要求,检测速度达到了95.85 fps,满足小目标缺陷实时检测的应用需求。 展开更多
关键词 multi-CR YOLO 缺陷检测 印刷电路板 SDDT-FPN PCR C_(5)ECA
下载PDF
Evaluation of Linear Precoding Schemes for Cooperative Multi-Cell MU MIMO in Future Mobile Communication Systems
20
作者 Juma Said Ally 《Journal of Computer and Communications》 2023年第6期28-42,共15页
In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were prop... In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively. 展开更多
关键词 Precoding Schemes Cooperative Networks Interference multi-Input multi-Output (MIMO) multi-Cell and Multiuser
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部