An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 presc...A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 prescaler and by 128-255 multi-modulus frequency divider. In the circuit design, power and speed trade-offs are analyzed for the prescaler, and power optimization techniques are used according to the input frequency of each divider cell for the 128-255 multimodulus frequency divider. The chip is designed with ESD protected I/O PAD. The dividers chain can work as high as 2.4GHz with a single ended input signal and beyond 2.6GHz with differential input signals. The dual-modulus prescaler consumes 11mA of current while the 128-255 multi-modulus frequency divider consumes 17mA of current with a 3.3V power supply. The core area of the die without PAD is 0.65mm × 0.3mm. This programmable multi-modulus frequency divider can be used for 2.4GHz ISM band PLL-based frequency synthesizers. To our knowledge, this is the first reported multi-modulus frequency divider with this structure in China.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation f...The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.展开更多
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with...We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper,...Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.展开更多
This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and...This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).展开更多
In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adapt...In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.展开更多
To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.Howeve...To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.展开更多
Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns...Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.展开更多
Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum ...Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.展开更多
Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a maj...Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
文摘A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 prescaler and by 128-255 multi-modulus frequency divider. In the circuit design, power and speed trade-offs are analyzed for the prescaler, and power optimization techniques are used according to the input frequency of each divider cell for the 128-255 multimodulus frequency divider. The chip is designed with ESD protected I/O PAD. The dividers chain can work as high as 2.4GHz with a single ended input signal and beyond 2.6GHz with differential input signals. The dual-modulus prescaler consumes 11mA of current while the 128-255 multi-modulus frequency divider consumes 17mA of current with a 3.3V power supply. The core area of the die without PAD is 0.65mm × 0.3mm. This programmable multi-modulus frequency divider can be used for 2.4GHz ISM band PLL-based frequency synthesizers. To our knowledge, this is the first reported multi-modulus frequency divider with this structure in China.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
文摘The China initiative Accelerator Driven System,CiADS,physics design adopts 162.5 MHz,325 MHz,and 650 MHz cavities,which are driven by the corresponding radio frequency(RF)power system,requiring frequency translation front-end for the RF station.For that application,a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility.The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design.With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion,specially designed LO distribution net to increase isolation between adjacent channels,and external band-pass filter to realize expected up-conversion frequencies,high maintenance and modular front-end generalpurpose design has been implemented.Results of standard parameters show an R2 value of at least 99.991%in the range of-60-10 dBm for linearity,up to 18 dBm for P1dB,and up to 89 dBc for cross talk between adjacent channels.The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz;cumulative phase noise is 0.006°;and amplitude and phase stability are 0.022%and 0.034°,respectively.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金the support of the National Basic Research Program(973 Program)of China(Grant No.2011CB610304)the National Natural Science Foundation of China(Grant Nos.11332004 and 11402046)+2 种基金China Postdoctoral Science Foundation(No.2015M571296)the 111 Project(B14013)the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32)
文摘We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
基金supported by the Prospective Project of Industry–University–Research Institution of Jiangsu Province,China(Grant No.BY2010125)the National Natural Science Foundation of China(Grant No.11175127)
文摘Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.
基金The National Natural Science Foundation of China(No.61531009,No.61471108)The National Major Projects of China(No.2016ZX03001009)。
文摘This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).
文摘In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and tested the method using synthetic data with 25% noise. We compared the matching pursuit results of the time-frequency dictionaries. The results indicated that the dictionary which matched the signal characteristics better would obtain better results, and can reflect the information of seismic data effectively.
基金funded by Jilin Province Science and Technology Development Plan Projects(20230508157RC)the National Natural Science Foundation of China(U2066208).
文摘To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.
基金supported by a National Health and Medical Research Council(NHMRC)Investigator Grant(APP2008702)supported by the National Council for Scientific and Technological Developments-CNPq(process number 308772/2022-9)。
文摘Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)。
文摘Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
文摘Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.