期刊文献+
共找到1,048篇文章
< 1 2 53 >
每页显示 20 50 100
A STABILITY RESULT FOR TRANSLATINGSPACELIKE GRAPHS IN LORENTZ MANIFOLDS
1
作者 高雅 毛井 吴传喜 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期474-483,共10页
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece... In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation. 展开更多
关键词 mean curvature flow spacelike graphs translating spacelike graphs maximal spacelike graphs constant mean curvature Lorentz manifolds
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
2
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
3
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 graph neural network Multi-head attention mechanism Spatio-temporal dependency Traffic flow prediction
下载PDF
Totally Coded Method for Signal Flow Graph Algorithm 被引量:2
4
作者 徐静波 周美华 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期63-68,共6页
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo... After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced. 展开更多
关键词 SIGNAL flow graph algorithm CODED method SIN.
下载PDF
RECONSTRUCTION OF ONE DIMENSIONAL MULTI-LAYERED MEDIA BY USING A TIME DOMAIN SIGNAL FLOW GRAPH TECHNIQUE 被引量:1
5
作者 崔铁军 梁昌洪 《Journal of Electronics(China)》 1993年第2期162-169,共8页
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f... A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this 展开更多
关键词 Multi-layered MEDIUM Reconstruct PERMITTIVITY profile INVERSE SCATTERING Time DOMAIN signal flow graph
下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:2
6
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction graph convolutional network External factors Attentional encoder network Spatiotemporal correlation
下载PDF
Analysis of Electronic Circuits with the Signal Flow Graph Method
7
作者 Feim Ridvan Rasim Sebastian M. Sattler 《Circuits and Systems》 2017年第11期261-274,共14页
In this work a method called “signal flow graph (SFG)” is presented. A signal-flow graph describes a system by its signal flow by directed and weighted graph;the signals are applied to nodes and functions on edges. ... In this work a method called “signal flow graph (SFG)” is presented. A signal-flow graph describes a system by its signal flow by directed and weighted graph;the signals are applied to nodes and functions on edges. The edges of the signal flow graph are small processing units, through which the incoming signals are processed in a certain form. In this case, the result is sent to the outgoing node. The SFG allows a good visual inspection into complex feedback problems. Furthermore such a presentation allows for a clear and unambiguous description of a generating system, for example, a netview. A Signal Flow Graph (SFG) allows a fast and practical network analysis based on a clear data presentation in graphic format of the mathematical linear equations of the circuit. During creation of a SFG the Direct Current-Case (DC-Case) was observed since the correct current and voltage directions was drawn from zero frequency. In addition, the mathematical axioms, which are based on field algebra, are declared. In this work we show you in addition: How we check our SFG whether it is a consistent system or not. A signal flow graph can be verified by generating the identity of the signal flow graph itself, illustrated by the inverse signal flow graph (SFG&minus;1). Two signal flow graphs are always generated from one circuit, so that the signal flow diagram already presented in previous sections corresponds to only half of the solution. The other half of the solution is the so-called identity, which represents the (SFG&minus;1). If these two graphs are superposed with one another, so called 1-edges are created at the node points. In Boolean algebra, these 1-edges are given the value 1, whereas this value can be identified with a zero in the field algebra. 展开更多
关键词 ANALOG FEEDBACK Network Theory SYMBOLIC ANALYSIS Signal flow graph TRANSFER Function
下载PDF
Development of an Improved GUI Automation Test System Based on Event-Flow Graph 被引量:2
8
作者 Yongzhong Lu Danping Yan +1 位作者 Songlin Nie Chun Wang 《Journal of Software Engineering and Applications》 2008年第1期38-43,共6页
A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GU... A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GUI test sample so as to obtain the event-flow graph. Then two approaches are adopted to create GUI test sample cases. That is to say, an improved ant colony optimization (ACO) algorithm is employed to establish a sequence of testing cases in the course of the daily smoke test. The sequence goes through all object event points in the event-flow graph. On the other hand, the spanning tree obtained by deep breadth-first search (BFS) approach is utilized to obtain the testing cases from goal point to outset point in the course of the deep regression test. Finally, these cases are applied to test the new GUI. Moreover, according to the above-mentioned model, a corresponding prototype system based on Microsoft UI automation framework is developed, thus giving a more effective way to improve the GUI automation test in Windows OS. 展开更多
关键词 Automated Software TESTING graphIC User Interface Event-flow graph Regression TESTING ANT COLONY Optimization UI AUTOMATION
下载PDF
面向交通流量预测的时空Graph-CoordAttention网络
9
作者 刘建松 康雁 +2 位作者 李浩 王韬 王海宁 《计算机科学》 CSCD 北大核心 2023年第S01期558-564,共7页
交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧... 交通预测是城市智能交通系统的一个重要研究组成部分,使人们的出行更加效率和安全。由于复杂的时间和空间依赖性,准确预测交通流量仍然是一个巨大的挑战。近年来,图卷积网络(GCN)在交通预测方面表现出巨大的潜力,但基于GCN的模型往往侧重于单独捕捉时间和空间的依赖性,忽视了时间和空间依赖性之间的动态关联性,不能很好地融合它们。此外,以前的方法使用现实世界的静态交通网络来构建空间邻接矩阵,这可能忽略了动态的空间依赖性。为了克服这些局限性,并提高模型的性能,提出了一种新颖的时空Graph-CoordAttention网络(STGCA)。具体来说,提出了时空同步模块,用来建模不同时刻的时空依赖交融关系。然后,提出了一种动态图学习的方案,基于车流量之间数据关联,挖掘出潜在的图信息。在4个公开的数据集上和现有基线模型进行对比实验,STGCA表现了优异的性能。 展开更多
关键词 交通流量预测 时空预测 图卷积网络 注意力机制 时空依赖
下载PDF
Cyclic Reconfigurable Flow Shop under Different Configurations Modeling and Optimization Based on Timed Event Graph
10
作者 REN Si-Cheng XU De WANG Fang TAN Min 《自动化学报》 EI CSCD 北大核心 2006年第1期15-20,共6页
Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind o... Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps. 展开更多
关键词 循环流程 制造业 时间事件 建模 优化设计
下载PDF
Towards sparse matrix operations:graph database approach for power grid computation
11
作者 Daoxing Li Kai Xiao +2 位作者 Xiaohui Wang Pengtian Guo Yong Chen 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期50-63,共14页
The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger mu... The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations. 展开更多
关键词 graph database graph description MATRIX Parallel computing Power flow
下载PDF
Railway Passenger Flow Forecasting by Integrating Passenger Flow Relationship and Spatiotemporal Similarity
12
作者 Song Yu Aiping Luo Xiang Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1877-1893,共17页
Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the... Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%. 展开更多
关键词 Railway passenger flow forecast graph convolution neural network passenger flow relationship passenger flow similarity
下载PDF
Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model
13
作者 Fulu Wei Xin Li +3 位作者 Yongqing Guo Zhenyu Wang Qingyin Li Xueshi Ma 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2001-2018,共18页
Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow d... Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning.Due to the complexity of road traffic flow data,traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy.In this study,a combined flow direction level traffic flow prediction graph convolutional network(GCN)and long short-term memory(LSTM)model based on spatiotemporal characteristics is proposed.First,a GCN model is employed to capture the topological structure of the data graph and extract the spatial features of road networks.Additionally,due to the capability to handle long-term dependencies,the longterm memory is used to predict the time series of traffic flow and extract the time features.The proposed model is evaluated using real-world data,which are obtained from the intersection of Liuquan Road and Zhongrun Avenue in the Zibo High-Tech Zone of China.The results show that the developed combined GCNLSTM flow direction level traffic flow prediction model can perform better than the single models of the LSTM model and GCN model,and the combined ARIMA-LSTM model in traffic flow has a strong spatiotemporal correlation. 展开更多
关键词 flow direction level traffic flow forecasting spatiotemporal characteristics graph convolutional network short-and long-termmemory network
下载PDF
多尺度融合与动态自适应图的公交客流预测模型 被引量:1
14
作者 郭翔宇 彭莉兰 +1 位作者 李崇寿 李天瑞 《计算机科学与探索》 CSCD 北大核心 2024年第7期1879-1888,共10页
公交客流预测是公共交通规划和管理中的重要问题。虽然时空图卷积在地铁客流预测任务中获得了很好的预测效果,但是面对公交更复杂的线路、大规模的节点数据,现有的基于图卷积的空间建模方法将带来巨大的空间内存消耗。同时,公交客流量... 公交客流预测是公共交通规划和管理中的重要问题。虽然时空图卷积在地铁客流预测任务中获得了很好的预测效果,但是面对公交更复杂的线路、大规模的节点数据,现有的基于图卷积的空间建模方法将带来巨大的空间内存消耗。同时,公交客流量短时间范围内更可能受到瞬时交通状况的影响。为了解决这些挑战,提出了一种多尺度融合和动态自适应图的公交客流预测模型(MFDAG)。该模型融合客流、时刻和周信息以增加数据的特征维度,用动态自适应图的方法来学习不同站点之间的关系。进一步提出了一种多尺度融合传播的方法来表示复杂的空间依赖关系,同时设计了一种多尺度卷积传播的方法来学习不同尺度的时间依赖关系。在两个真实的客流数据集上进行了实验,并与其他交通预测方法进行了比较。实验结果表明,所提出的多尺度融合和动态自适应图的公交客流预测方法具有更高的预测准确度。 展开更多
关键词 公交客流预测 图采样 动态自适应图 多尺度融合
下载PDF
面向代码搜索的函数功能多重图嵌入
15
作者 徐杨 陈晓杰 +1 位作者 汤德佑 黄翰 《软件学报》 EI CSCD 北大核心 2024年第8期3809-3823,共15页
如何提高异构的自然语言查询输入和高度结构化程序语言源代码的匹配准确度,是代码搜索的一个基本问题.代码特征的准确提取是提高匹配准确度的关键之一.代码语句表达的语义不仅与其本身有关,还与其所处的上下文相关.代码的结构模型为理... 如何提高异构的自然语言查询输入和高度结构化程序语言源代码的匹配准确度,是代码搜索的一个基本问题.代码特征的准确提取是提高匹配准确度的关键之一.代码语句表达的语义不仅与其本身有关,还与其所处的上下文相关.代码的结构模型为理解代码功能提供了丰富的上下文信息.提出一个基于函数功能多重图嵌入的代码搜索方法.在所提方法中,使用早期融合的策略,将代码语句的数据依赖关系融合到控制流图中,构建函数功能多重图来表示代码.该多重图通过数据依赖关系显式表达控制流图中缺乏的非直接前驱后继节点的依赖关系,增强语句节点的上下文信息.同时,针对多重图的边的异质性,采用关系图卷积网络方法从函数多重图中提取代码的特征.在公开数据集的实验表明,相比现有基于代码文本和结构模型的方法,所提方法的MRR提高5%以上.通过消融实验也表明控制流图较数据依赖图在搜索准确度上贡献较大. 展开更多
关键词 代码搜索 控制流图 数据依赖图 函数功能多重图
下载PDF
基于循环独立机制的交通流量预测
16
作者 温雯 江建强 +1 位作者 蔡瑞初 郝志峰 《广东工业大学学报》 CAS 2024年第1期86-92,共7页
交通流量预测是智能交通控制和管理系统的一个重要环节,但交通流量数据具有时间和空间上的非线性和复杂性等特征,为对其进行精准预测,本文提出了Graph Temopral Recurrent Independent Mechanisms (G-tRIM)模型。该模型使用图注意力网络... 交通流量预测是智能交通控制和管理系统的一个重要环节,但交通流量数据具有时间和空间上的非线性和复杂性等特征,为对其进行精准预测,本文提出了Graph Temopral Recurrent Independent Mechanisms (G-tRIM)模型。该模型使用图注意力网络(Graph Attention Networks, GAT)来有效捕获交通流量数据的空间依赖关系,使用循环独立机制(Recurrent Independent Mechanisms, RIM)来精准刻画交通流量数据的潜在状态。最后在北京和贵州数据集上,以均方误差(Mean Square Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)为指标进行实验,结果表明,G-tRIM在各个数据集上的表现均优于基准模型。 展开更多
关键词 交通流量预测 图注意力网络 循环独立机制
下载PDF
基于ASTLSTM的地铁乘客流量短时预测
17
作者 田钊 程钰婕 +3 位作者 张乾钟 牛亚杰 刘炜 杨艳芳 《郑州大学学报(理学版)》 CAS 北大核心 2024年第5期55-61,共7页
地铁乘客流量预测是智能交通系统的重要环节,当前大多数预测模型较少对地铁乘客流量进行时空相关性建模,且未考虑空气质量等天气因素带来的影响,存在地铁乘客流量预测准确度不高的问题。针对以上问题,提出基于注意力机制的时空长短期记... 地铁乘客流量预测是智能交通系统的重要环节,当前大多数预测模型较少对地铁乘客流量进行时空相关性建模,且未考虑空气质量等天气因素带来的影响,存在地铁乘客流量预测准确度不高的问题。针对以上问题,提出基于注意力机制的时空长短期记忆(ASTLSTM)网络的地铁乘客流量短时预测模型。首先,对数据进行预处理;然后,利用注意力机制与图卷积网络(GCN)、卷积神经网络(CNN)相融合,挖掘地铁数据中的时空相关性,并通过长短期记忆网络(LSTM)来提取空气质量数据中的外部特征;最后,通过特征融合得到地铁乘客流量预测结果。实验结果表明,ASTLSTM模型与LSTM、Conv LSTM等典型模型相比,在短期的地铁乘客流量预测上都有较高的准确度。 展开更多
关键词 地铁乘客流量预测 时空特征 注意力机制 图卷积神经网络
下载PDF
嵌入式处理器自定义指令迭代识别方法仿真
18
作者 王前莉 李颖 《计算机仿真》 2024年第8期276-280,共5页
嵌入式系统中的硬件资源是有限的,并且自定义指令和原始指令之间可能存在冲突,导致指令代码识别精准度降低、运行功耗较高。为此,提出嵌入式处理器自定义指令迭代低功耗识别方法。对嵌入式处理器的指令代码展开可视化处理,将指令图像输... 嵌入式系统中的硬件资源是有限的,并且自定义指令和原始指令之间可能存在冲突,导致指令代码识别精准度降低、运行功耗较高。为此,提出嵌入式处理器自定义指令迭代低功耗识别方法。对嵌入式处理器的指令代码展开可视化处理,将指令图像输入卷积神经网络中,检测指令代码中存在的恶意代码,采用开源编译器将代码转变为控制数据流图,枚举并选择子图,通过代码转换完成嵌入式处理器自定义指令识别。仿真结果表明,所提方法的恶意代码检测精度高、代码识别准确率高,始终保持在70%以上,平均能耗仅为89J。 展开更多
关键词 嵌入式处理器 恶意代码检测 自定义指令 控制数据流图 指令识别
下载PDF
基于改进Node2vec算法的锅炉温度场分割方法研究
19
作者 张悦 梁珊珊 《电力科学与工程》 2024年第5期72-78,共7页
针对温度场特征参数差异引发的锅炉温度场分割准确性的问题,以维持温度场特征为目标,引入图结构表达场数据,通过改进Node2vec算法进行聚类分析,进而实现锅炉温度场的最佳分割。该方法基于多维度的特征信息对锅炉温度场实现分割,能够更... 针对温度场特征参数差异引发的锅炉温度场分割准确性的问题,以维持温度场特征为目标,引入图结构表达场数据,通过改进Node2vec算法进行聚类分析,进而实现锅炉温度场的最佳分割。该方法基于多维度的特征信息对锅炉温度场实现分割,能够更准确地保留流场特征。在标准数据集上进行了实验验证,结果表明在具有多维度特征的数据集上,所提方法相比其他对比算法在分割效果方面有提升显著。最后将提出的方法用于分割电站锅炉温度场,结果表明该方法可以很好地捕捉温度场数据中的局部和全局特征,且结果具有较好的精确性。 展开更多
关键词 燃煤锅炉 温度场 流场分割 图结构 Node2vec
下载PDF
融合多种模态特征的井下供水管网流量预测
20
作者 赵安新 刘鼎 +2 位作者 郭仕林 战仕发 陈志刚 《煤炭工程》 北大核心 2024年第2期24-30,共7页
煤矿井下供水系统是煤矿安全生产的生命线,供水管网水流量的预测是供水系统优化调度的基础,预测的重要性对供水调度有重要影响。文章提出了一种融合多模态数据特征的煤矿井下供水管网流量预测方法,该方法通过图深度学习的方法实现了对... 煤矿井下供水系统是煤矿安全生产的生命线,供水管网水流量的预测是供水系统优化调度的基础,预测的重要性对供水调度有重要影响。文章提出了一种融合多模态数据特征的煤矿井下供水管网流量预测方法,该方法通过图深度学习的方法实现了对井下管网空间拓扑结构、历史时间依赖、井下实际生产工况、周期相关等多种数据模态特征的融合,具体的,使用添加空间注意机制的图卷积神经网络获取井下管网监测点的空间拓扑关系,然后利用循环神经网络中的门控循环单元获取监测点的时间依赖,并融合煤矿生产规律与不同周期的流量数据形成最终预测结果,通过陕西亭南煤矿实际数据进行实验,结果表明,提出的预测方法相较于SVM、LSTM、STGCN等方法能更准确地预测井下流量未来的趋势,预测偏差分别降低了9.3%、6.84%和3.65%。 展开更多
关键词 煤矿井下 供水管网 图神经网络 深度学习 流量预测
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部