A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge struct...This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.展开更多
With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction techn...With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction technologies of road bridges is pivotal,as it directly impacts the subsequent operation and maintenance phases.Although the design and construction techniques for continuous girder transitions have been progressively improving,challenges still persist.This paper takes the example of the continuous girder design for the T-structure(75 m+75 m)of the Xintai Highway Crossing Yanzhou-Shijiusuo Railway Separation Interchange Project and delves into an analysis of the structural design calculations for the bridge transition,the transition structure’s design,and critical considerations during construction.The findings presented here can serve as a valuable reference for similar project designs.展开更多
This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite elemen...This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite element method and self-compiling program, a systematic study of the reliability of LRB continuous girder bridges is given by the use of different indicators, including the riding comfort of the LRB system, the pounding and dynamic stability when the LRB system is subjected to seismic excitations, and the reliability of the LRB system when subjected to other common horizontal loads. The results show that the LRB system has obvious advantages over the traditional continuous girder structure. The LRB isolation effect remains good even when pile-soil interaction is considered; the vertical rigidity of the LRB guarantees desirable riding comfort. The LRB demonstrates good reliability when subjected to the effects of braking, wind loads and temperature. However, it is also pointed out that the pounding of the LRB system subjected to earthquakes must be avoided, and the dynamic stability may be reduced when the LRB system has higher piers and generates a larger displacement in a strong earthquake. Useful advice and guidance are proposed for engineering application.展开更多
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat...The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
The aerodynamic performance of high-speed trains passing each other was investigated on a simply supported box girder bridge,with a span of 32 m,under crosswinds.The bridge and train models,modeled at a geometric scal...The aerodynamic performance of high-speed trains passing each other was investigated on a simply supported box girder bridge,with a span of 32 m,under crosswinds.The bridge and train models,modeled at a geometric scale ratio of 1:30,were used to test the aerodynamic forces of the train,with the help of a designed moving test rig in the XNJD-3 wind tunnel.The effects of wind speed,train speed,and yaw angle on the aerodynamic coefficients of the train were analyzed.The static and moving model tests were compared to demonstrate how the movement of the train influences its aerodynamic characteristics.The results show that the sheltering effect introduced by trains passing each other can cause a sudden change in force on the leeward train,which is further influenced by the wind and running speeds.Detailed analyses related to the effect of wind and train speeds on the aerodynamic coefficients were conducted.The relationship between the change in aerodynamic coefficients and yaw angle was finally described by a series of proposed fitting formulas.展开更多
The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and t...The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.展开更多
Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can redu...Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can reduce time, faulty inspection, and cost of inspection. In this study, we developed a computer model using deep learning Convolution Neural Network (CNN), which can be used to automatically detect the crack and non-crack type structure. The goal of this research is to allow application of state-of-the-art deep neural network and Unmanned Aerial Vehicle (UAV) technologies for highway bridge girder inspection. As a pilot study of implementing deep learning in Bridge Girder, we study the recognition, length, and location of crack in the structure of the UTC campus old garage concrete ceiling slab. A total of 2086 images of crack and non-crack were taken from UTC Old Library parking garage ceiling using handheld mobile phone and drone. After training the model shows 98% accuracy with crack and non-crack types of structures.展开更多
Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Consider...Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.展开更多
To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristi...To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.展开更多
The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the sy...The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety c...Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.展开更多
Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature...Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature gradient models (JTG D60--2004 specification, BS5400 specification and the temperature gradient which was proposed in this paper), the stress of control sections was calculated by finite element program ANSYS. The calculated result indicated that the temperature gradient that was put forward in JTG D60-2004 specification and BS5400 specification for calculating the stress of fiat steel box girder was not suitable to apply to fiat steel box girder. The temperature gradient on flat steel box girder which was proposed in this paper was reasonable.展开更多
The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural respon...The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural response of box girder bridge decks strengthened using CFRP (carbon fiber reinforced polymers) under close-in detonations. Due to the lack of experimental research on this topic, the study is conducted using the explicit finite element computer program LS-DY-NA. The numerical study will be verified using the results of strengthened reinforced concrete slabs under field detonations. The blast load was assumed to be detonated above the bridge deck. The key parameters investigated are the charge size, and the strengthening location on the deck. This paper will present the results of this investigation and provides recommendations for predicting the local damage level based on the CFRP strengthening design under blast threat.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me...Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.展开更多
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.
文摘With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction technologies of road bridges is pivotal,as it directly impacts the subsequent operation and maintenance phases.Although the design and construction techniques for continuous girder transitions have been progressively improving,challenges still persist.This paper takes the example of the continuous girder design for the T-structure(75 m+75 m)of the Xintai Highway Crossing Yanzhou-Shijiusuo Railway Separation Interchange Project and delves into an analysis of the structural design calculations for the bridge transition,the transition structure’s design,and critical considerations during construction.The findings presented here can serve as a valuable reference for similar project designs.
基金The National Natural Science Foundation of China(No.51008134)
文摘This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite element method and self-compiling program, a systematic study of the reliability of LRB continuous girder bridges is given by the use of different indicators, including the riding comfort of the LRB system, the pounding and dynamic stability when the LRB system is subjected to seismic excitations, and the reliability of the LRB system when subjected to other common horizontal loads. The results show that the LRB system has obvious advantages over the traditional continuous girder structure. The LRB isolation effect remains good even when pile-soil interaction is considered; the vertical rigidity of the LRB guarantees desirable riding comfort. The LRB demonstrates good reliability when subjected to the effects of braking, wind loads and temperature. However, it is also pointed out that the pounding of the LRB system subjected to earthquakes must be avoided, and the dynamic stability may be reduced when the LRB system has higher piers and generates a larger displacement in a strong earthquake. Useful advice and guidance are proposed for engineering application.
基金National Natural Science Foundation of China Under Grant No. 50708074National Key Technology R&D Program Under Grant No. 2009BAG15B01+2 种基金the Ministry of Science and Technology of China, Under Grant No. SLDRCE 08-B-04the Fundamental Research Funds for the Central UniversitiesKwang-Hua Fund for College of Civil Engineering, Tongji University
文摘The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
基金This work was financially supported by the National Natural Science Foundation of China (U1434205, 51708645).
文摘The aerodynamic performance of high-speed trains passing each other was investigated on a simply supported box girder bridge,with a span of 32 m,under crosswinds.The bridge and train models,modeled at a geometric scale ratio of 1:30,were used to test the aerodynamic forces of the train,with the help of a designed moving test rig in the XNJD-3 wind tunnel.The effects of wind speed,train speed,and yaw angle on the aerodynamic coefficients of the train were analyzed.The static and moving model tests were compared to demonstrate how the movement of the train influences its aerodynamic characteristics.The results show that the sheltering effect introduced by trains passing each other can cause a sudden change in force on the leeward train,which is further influenced by the wind and running speeds.Detailed analyses related to the effect of wind and train speeds on the aerodynamic coefficients were conducted.The relationship between the change in aerodynamic coefficients and yaw angle was finally described by a series of proposed fitting formulas.
基金Supported by the National Natural Science Foundation of China(No.51178310)the Foundation of China Scholarship Council(No.201308120137)
文摘The three-stage simulation method based on LS-DYNA was introduced in this study to simulate the progressive collapse of a continuous girder bridge after a ship-bridge collision. The pile-soil dynamic interaction and the initial stress and deformation of the whole bridge before the collision were considered. By analyzing the damage, deformation, stress distribution and collapse process of the whole bridge, the results show that the displacement response of the cap beam lags behind the pile cap. The response order of the whole bridge's components depends on their distances from the collision region. The plastic deformation of soil around piles has a positive effect on delaying the further increase in the displacement of piles. The impacted pier's losing stability and its superstructure's excessive deformation are the main reasons leading to the progressive collapse of the continuous girder bridge.
文摘Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can reduce time, faulty inspection, and cost of inspection. In this study, we developed a computer model using deep learning Convolution Neural Network (CNN), which can be used to automatically detect the crack and non-crack type structure. The goal of this research is to allow application of state-of-the-art deep neural network and Unmanned Aerial Vehicle (UAV) technologies for highway bridge girder inspection. As a pilot study of implementing deep learning in Bridge Girder, we study the recognition, length, and location of crack in the structure of the UTC campus old garage concrete ceiling slab. A total of 2086 images of crack and non-crack were taken from UTC Old Library parking garage ceiling using handheld mobile phone and drone. After training the model shows 98% accuracy with crack and non-crack types of structures.
文摘Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.
基金Projects(20B062,19B054)supported by Excellent Youth Program of Hunan Education Department,ChinaProject(2019JJ50688)supported by Hunan Provincial Natural Science Foundation of ChinaProject(kq195004)supported by Changsha Science and Technology Bureau Project,China。
文摘To study the additional aerodynamic effect on a bridge girder under the action of wind-driven rain, the rainfall similarity considering raindrop impact and surface water is first given. Then, the dynamic characteristics and the process of vortex and flutter generation of the segment models under different rain intensities and angles of attack are tested by considering several typical main girder sections as examples. The test results indicate that the start and end wind speeds,interval length and number of vortex vibrations remain unchanged when it is raining, rainfall will reduce the windinduced vortex response. When test rain intensity is large, the decrease of amplitude is obvious. However, after considering the rain intensity similarity in this study, all of actual maximum rain intensities after conversion approach the domestic extreme rain intensity of approximately 709 mm/h. It can be observed that rainfall has a limited influence on the dynamic characteristics of the structure and vortex vibration response. When the test rain intensity is 120 mm/h, the critical wind speed of the model flutter increases by 20%-30%. However, after considering the rain intensity similarity ratio, the influence of rainfall on the wind-induced flutter instability of the bridge girder may be ignored.
基金This work was financially supported by National Natural Science Foundation of China through Grant 51778471Scientific Project of Education Department of Jiangxi Province GJJ160620Science and Technology Project of Communications Department of Jiangxi Province 2016C0006.
文摘The isolated curved girder bridge's vibration characteristics play a major part in the seismic responses of structures and anti-seismic properties.A clear analytic relationship between design parameters and the system's vibration characteristics could be established by its simplified dynamic analysis model,making it convenient for providing a reference to the optimization of design and safety analysis.A double-mass six-degree-of-freedom model for curved girder bridges with isolation bearings installed at the top of the bridge piers is built and a simplified analysis method for the vibration characteristics of the system is provided.Combined with the Matlab programming,the influences of radius of curvature,central angle,bridge deck width and damping ratio of the isolation layer and circular frequency of the isolation layer of isolated curved girder bridges on the pseudo-undamped natural circular frequency(called pseudo-frequency for short)and system damping ratio are systematically analyzed,and the sensitivity of vibration characteristics of isolated curved girder bridges is studied.The results show that the vibration characteristics of isolated curved girder bridges can be reflected well with this simplified model and calculation method.The pseudo-frequency of curved girder and system damping ratios increases with the increase of the isolation layer.The third-order vibration characteristic is more sensitive to the parameters of a curved girder,and the first-order vibration characteristic is sensitive to both central angle and radius of curvature to some extent while insensitive to the width of the bridge deck.Furthermore,the second-order vibration characteristic is not sensitive to the parameters of a curved girder.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)
文摘Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.
文摘Using the temperature gradient which was proposed by continuously measuring flat steel box girder of Runyang Bridge, temperature effects of flat steel box girder were studied for Taizhou Bridge. With three temperature gradient models (JTG D60--2004 specification, BS5400 specification and the temperature gradient which was proposed in this paper), the stress of control sections was calculated by finite element program ANSYS. The calculated result indicated that the temperature gradient that was put forward in JTG D60-2004 specification and BS5400 specification for calculating the stress of fiat steel box girder was not suitable to apply to fiat steel box girder. The temperature gradient on flat steel box girder which was proposed in this paper was reasonable.
文摘The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural response of box girder bridge decks strengthened using CFRP (carbon fiber reinforced polymers) under close-in detonations. Due to the lack of experimental research on this topic, the study is conducted using the explicit finite element computer program LS-DY-NA. The numerical study will be verified using the results of strengthened reinforced concrete slabs under field detonations. The blast load was assumed to be detonated above the bridge deck. The key parameters investigated are the charge size, and the strengthening location on the deck. This paper will present the results of this investigation and provides recommendations for predicting the local damage level based on the CFRP strengthening design under blast threat.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金supported by the Key Project of Science and Technology R&DProgram of CHINA RAILWAY(AJZH2020-001)and Science and Technology Program Project of Shudao Investment Group(SRIG2020GG0001).On behalf of all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.