期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge
1
作者 Tengda Li Gang Wang Qiang Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2559-2586,共28页
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor... Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA. 展开更多
关键词 Deep reinforcement learning dynamic task allocation intelligent decision-making multi-agent system MADDPG-D2 algorithm
下载PDF
Hyper-Distributed Hyper-Parallel Self-Organizing Dynamic Scheduling Based on Solitary Wave
2
作者 帅典勋 顾静 +1 位作者 顾慧平 邓志东 《Journal of Computer Science & Technology》 SCIE EI CSCD 2001年第5期434-442,共9页
This paper presents a new soliton approach to hyper-distributed hyper-parallel self-organizing dynamic scheduling for task allocations among rational autonomous agents in a multi-agent system (MAS). This approach can ... This paper presents a new soliton approach to hyper-distributed hyper-parallel self-organizing dynamic scheduling for task allocations among rational autonomous agents in a multi-agent system (MAS). This approach can overcome many drawbacks of other mechanisms currently used for coalition formation and cooperation in MAS. The thorny problems, such as overabundant bid, social behaviors, colony intelligence, variable neighbors, and interdepen-dency, can easily be treated by using the proposed approach, whereas they are very difficult for other conventional approaches. The simulation on a distributed transport scheduling sys-tem shows the soliton approach featured by hyper-parallelism, effectiveness, openness, dynamic alignment and adaption. 展开更多
关键词 SOLITON distributed artificial intelligence multi-agent system hyper-distributed hyper-parallel problem-solving dynamic task allocation
原文传递
基于DFS的多Agent动态任务分配算法 被引量:1
3
作者 陈凤 先晓兵 《计算机工程》 CAS CSCD 北大核心 2009年第14期230-232,235,共4页
针对任务分配算法应用于不确定动态环境时存在的不足,研究具有动态模糊特性的任务环境,借助动态模糊集理论,给出相关的多Agent动态任务分配算法并进行实例测试。测试结果表明,该算法模型可以合理地模拟MAS系统中任务分配的运行过程,并... 针对任务分配算法应用于不确定动态环境时存在的不足,研究具有动态模糊特性的任务环境,借助动态模糊集理论,给出相关的多Agent动态任务分配算法并进行实例测试。测试结果表明,该算法模型可以合理地模拟MAS系统中任务分配的运行过程,并获得最优的任务分配策略与良好的任务实现效果。 展开更多
关键词 多AGENT系统 动态任务分配 动态模糊集
下载PDF
基于动态模糊集的多Agent动态任务分配算法研究 被引量:1
4
作者 殷凡 牛丽 《科技通报》 北大核心 2013年第11期119-122,共4页
为了提高多Agent动态任务分配的效率,借助于动态模糊集理论对任务分配进行研究。首先详细介绍了动态模糊集相关定义和数学模型,接着进行实例仿真,给出相关的多Agent动态任务分配算法并进行实例测试。实验结果表明,此方法很好地解决了多A... 为了提高多Agent动态任务分配的效率,借助于动态模糊集理论对任务分配进行研究。首先详细介绍了动态模糊集相关定义和数学模型,接着进行实例仿真,给出相关的多Agent动态任务分配算法并进行实例测试。实验结果表明,此方法很好地解决了多Agent系统中动态任务分配的问题,并且在很大程度上提高了动态任务分配的效率,具有一定的研究价值。 展开更多
关键词 多AGENT系统 动态任务分配 动态模糊集
下载PDF
基于DFS的多Agent动态任务分配算法研究 被引量:6
5
作者 张瑜 李凡长 《电子学报》 EI CAS CSCD 北大核心 2009年第11期2551-2556,共6页
任务分配问题是MAS的重要研究内容之一,对于任务分配这一复杂问题,很多研究者从不同的角度提出各种行之有效的算法.这些算法对于确定的环境是有效的,对于不确定的动态的环境存在不足.本文针对具有动态模糊特性的任务环境进行研究,借助... 任务分配问题是MAS的重要研究内容之一,对于任务分配这一复杂问题,很多研究者从不同的角度提出各种行之有效的算法.这些算法对于确定的环境是有效的,对于不确定的动态的环境存在不足.本文针对具有动态模糊特性的任务环境进行研究,借助动态模糊集理论,给出了相关的多Agent动态任务分配算法.实例测试表明,算法模型可以合理地模拟MAS系统中任务分配的运行过程,并获得最优的任务分配策略和良好的任务实现效果. 展开更多
关键词 多AGENT 任务分配 动态模糊集 强化机制 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部