Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of th...Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes.展开更多
The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bol...The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bolt, grout, rock mass and bond interface,considering the shear properties of the grout and contact interface bonding behavior. In this case, the interfacial shear stress of the grout and rock mass and the bolt axial force are obtained under pull-out and normal working conditions. The results show that the peak shear stress of the interface with the shear deformation of the bond interface is significantly lower than that without it when the pull-out force is applied. When designing bolt parameters of grade IV and V rock mass, the relative deformation between the rock mass and anchor should be considered, with a “unimodal” to “bimodal” shear stress distribution.In the case of a low elastic modulus of rock masses,both the shear stress concentration and distribution range are obvious, and the neutral point is near the bolt head. As the elastic modulus increases, the shear stress concentration and distribution range are reduced, and the neutral point moves towards the distal end. As a result, the optimum length of fulllength grouted bolts can be determined by in-situ pull-out tests and decreases with the increased elastic modulus of the rock mass.展开更多
基金the National Natural Science Foundation of China (Nos.51104055,51274087,51604094 and 51674098)
文摘Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes.
基金funded by the Natural Science Foundation of China(Grants Nos.52179113,42207199,41831278)。
文摘The bolt anchoring force is closely related to the shear properties of the anchor interface. The shear stress distribution of full-length grouted bolts is analyzed based on the stress-strain relationship among the bolt, grout, rock mass and bond interface,considering the shear properties of the grout and contact interface bonding behavior. In this case, the interfacial shear stress of the grout and rock mass and the bolt axial force are obtained under pull-out and normal working conditions. The results show that the peak shear stress of the interface with the shear deformation of the bond interface is significantly lower than that without it when the pull-out force is applied. When designing bolt parameters of grade IV and V rock mass, the relative deformation between the rock mass and anchor should be considered, with a “unimodal” to “bimodal” shear stress distribution.In the case of a low elastic modulus of rock masses,both the shear stress concentration and distribution range are obvious, and the neutral point is near the bolt head. As the elastic modulus increases, the shear stress concentration and distribution range are reduced, and the neutral point moves towards the distal end. As a result, the optimum length of fulllength grouted bolts can be determined by in-situ pull-out tests and decreases with the increased elastic modulus of the rock mass.