To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a...To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.展开更多
To realize the high-precision vision measurement for large scale machine parts, a new vision measurement method based on dimension features of sequential partial images is proposed. Instead of mosaicking the partial i...To realize the high-precision vision measurement for large scale machine parts, a new vision measurement method based on dimension features of sequential partial images is proposed. Instead of mosaicking the partial images, extracting the dimension features of the sequential partial images and deriving the part size according to the relationships between the sequential images is a novel method to realize the high- precision and fast measurement of machine parts. To overcome the corresponding problems arising from the relative rotation between two sequential partial images, a rectifying method based on texture features is put forward to effectively improve the processing speed. Finally, a case study is provided to demonstrate the analysis procedure and the effectiveness of the proposed method. The experiments show that the relative error is less than 0. 012% using the sequential image measurement method to gauge large scale straight-edge parts. The measurement precision meets the needs of precise measurement for sheet metal parts.展开更多
Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solv...Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solve some high-dimensional problems,feature selection is carried out in limited training samples,and effective features are selected.This paper focuses on two Relief feature selection algorithms:Relief and ReliefF algorithm.The differences between them and their respective applicable scopes are analyzed.Based on Relief algorithm,the high weight feature subset is obtained,and the correlation between features is calculated according to the mutual information distance measure,and the high redundant features are removed to obtain the feature subset with higher quality.Experimental results on six datasets show the effectiveness of our method.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear comb...Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.展开更多
In order to improve the accuracy of escalator sprocket bearing fault diagnosis,the problem of the feature extraction method of bearing vibration signal is addressed.In this paper,empirical mode is used to decompose th...In order to improve the accuracy of escalator sprocket bearing fault diagnosis,the problem of the feature extraction method of bearing vibration signal is addressed.In this paper,empirical mode is used to decompose the original signal,and the optimal modal component among the multiple modal components is obtained after the optimization decomposition is selected by the envelope spectrum method,and the multi-angle feature measure is introduced to extract the fault characteristic value.According to the vibration characteristics of the bearing vibration signal data,a bearing signal feature group that is more inclined to the fault feature category information is established,which avoids the absolute problem of extracting a single metric feature.The fuzzy C-means clustering algorithm is used to cluster the sample data with similar characteristics into the same cluster area,which effectively solves the problem that a single measurement analysis cannot characterize the complex internal characteristics ofthe bearing vibration signal.展开更多
The aerodynamic aspects of indirect thrust measurement by the impulse method have been studied both experimentally and numerically. The underlying basic aerodynamic principle is outlined, the phenomena in subsonic, su...The aerodynamic aspects of indirect thrust measurement by the impulse method have been studied both experimentally and numerically. The underlying basic aerodynamic principle is outlined, the phenomena in subsonic, supersonic and arc-heated jets are explored, and factors affecting the accuracy of the method are studied and discussed. Results show that the impulse method is reliable for indirect thrust measurement if certain basic requirements are met, and a simple guideline for its proper application is given.展开更多
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ...A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.展开更多
The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the su...The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the subpixel centerline of structured light stripes is introduced to deal with the uneven width and grayscale distributions of laser stripes,which is based on the quadratic weighted grayscale centroid. By means of region-of-interest(ROI)division and image difference,an image preprocessing algorithm is developed for filtering noise and improving image quality. Furthermore,to acquire geometrical dimensions of various grooves and groove types precisely,the subpixel feature point extraction algorithm of grooves is designed. Finally, experimental results of feature size measuring show that the absolute error of measurement is 0.031—0.176 mm,and the relative error of measurement is 0.2%—3.6%.展开更多
An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the...An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various ir-relevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and in-terpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most im-portant and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy.展开更多
In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rou...In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.展开更多
The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of ta...The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of taking the contour geometric features into account,which may lead to mismatching in map boundaries and areas with intensive contours or extreme terrain changes.In light of this,it is put forward that a matching strategy from coarse to precious based on the contour geometric features.The proposed matching strategy can be described as follows.Firstly,the point sequence is converted to feature sequence according to a feature descriptive function based on curvature and angle of normal vector.Then the level of similarity among multi-source contours is calculated by using the longest common subsequence solution.Accordingly,the identical contours could be matched based on the above calculated results.In the experiment for the proposed method,the reliability and efficiency of the matching method are verified using simulative datasets and real datasets respectively.It has been proved that the proposed contour matching strategy has a high matching precision and good applicability.展开更多
Based on an electrical resistance tomography(ERT) sensor and the data mining technology,a new voidage measurement method is proposed for air-water two-phase flow.The data mining technology used in this work is a least...Based on an electrical resistance tomography(ERT) sensor and the data mining technology,a new voidage measurement method is proposed for air-water two-phase flow.The data mining technology used in this work is a least squares support vector machine(LS-SVM) algorithm together with the feature extraction method,and three feature extraction methods are tested:principal component analysis(PCA),partial least squares(PLS) and independent component analysis(ICA).In the practical voidage measurement process,the flow pattern is firstly identified directly from the conductance values obtained by the ERT sensor.Then,the appropriate voidage measurement model is selected according to the flow pattern identification result.Finally,the voidage is calculated.Experimental results show that the proposed method can measure the voidage effectively,and the measurement accuracy and speed are satisfactory.Compared with the conventional voidage measurement methods based on ERT,the proposed method doesn't need any image reconstruction process,so it has the advantage of good real-time performance.Due to the introduction of flow pattern identification,the influence of flow pattern on the voidage measurement is overcome.Besides,it is demonstrated that the LS-SVM method with PLS feature extraction presents the best measurement performance among the tested methods.展开更多
With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. ...With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.展开更多
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio...To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.展开更多
According to the basic problem of industrial production, the paper presents a monocular camera and automatic annotation ranging scheme with a ruler. The scheme eliminates a series of complex operation steps frequently...According to the basic problem of industrial production, the paper presents a monocular camera and automatic annotation ranging scheme with a ruler. The scheme eliminates a series of complex operation steps frequently used for image location of the calibration, image correction, it has simple implementation and has successfully realized precise ranging by using digital image processing technology. From the beginning of the analysis of image edge detection, edge detection principle and some common edge detection operators, and proposes an improved multi-scale edge detection algorithm, then according to the particularity of the edge proposed new edge thinning algorithm, finally mark the target point through the feature extraction, calculate the final results of fault location.展开更多
The morphological features of fish,such as the body length,the body width,the caudal peduncle length,the caudal peduncle width,the pupil diameter,and the eye diameter are very important indicators in smart mariculture...The morphological features of fish,such as the body length,the body width,the caudal peduncle length,the caudal peduncle width,the pupil diameter,and the eye diameter are very important indicators in smart mariculture.Therefore,the accurate measurement of the morphological features is of great significance.However,the existing measurement methods mainly rely on manual measurement,which is operationally complex,low efficiency,and high subjectivity.To address these issues,this paper proposes a scheme for segmenting fish image and measuring fish morphological features indicators based on Mask R-CNN.Firstly,the fish body images are acquired by a home-made image acquisition device.Then,the fish images are preprocessed and labeled,and fed into the Mask R-CNN for training.Finally,the trained model is used to segment fish image,thus the morphological features indicators of the fish can be obtained.The experimental results demonstrate that the proposed scheme can segment the fish body in pure and complex backgrounds with remarkable performance.In pure background,the average relative errors(AREs)of all indicators measured all are less than 2.8%,and the AREs of body length and body width are less than 0.8%.In complex background,the AREs of all indicators are less than 3%,and the AREs of body length and body width is less than 1.8%.2020 China Agricultural University.Production and hosting by Elsevier B.V.on behalf of KeAi.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).1.Introduction With the advancing of its scientific and technological capabilities,China has made great achievements in the mariculture.The production accounts for more than 70%of the world’s overall mariculture output[1].The measurement of body length,body width and other morphological features of fish have wide application prospects in smart mariculture.Due to the difference in the quality and feeding ability of the Juvenile fish,the growth of the fish in the same pond is significantly different after a period of growth.Then,the fish needs to be classified.Grading can make fish grow better and improve feed utilization[2].The fish body length and body width are closely related to the weight of the fish.In the mariculture,the fishermen judge the growth of the fish by collecting the morphological feature of the fish,and use the information as an important reference for feeding,fishing and classification[3].At present,most of the measurement methods of fish body morphological features are manual,the operator usesmeasuring ruler to measure manually.It requires high technical level,and has high labor intensity and low efficiency.Furthermore,https://doi.展开更多
基金The National Natural Science Foundation of China(No.51175267)the Natural Science Foundation of Jiangsu Province(No.BK2010481)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20113219120004)China Postdoctoral Science Foundation(No.20100481148)the Postdoctoral Science Foundation of Jiangsu Province(No.1001004B)
文摘To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.
文摘To realize the high-precision vision measurement for large scale machine parts, a new vision measurement method based on dimension features of sequential partial images is proposed. Instead of mosaicking the partial images, extracting the dimension features of the sequential partial images and deriving the part size according to the relationships between the sequential images is a novel method to realize the high- precision and fast measurement of machine parts. To overcome the corresponding problems arising from the relative rotation between two sequential partial images, a rectifying method based on texture features is put forward to effectively improve the processing speed. Finally, a case study is provided to demonstrate the analysis procedure and the effectiveness of the proposed method. The experiments show that the relative error is less than 0. 012% using the sequential image measurement method to gauge large scale straight-edge parts. The measurement precision meets the needs of precise measurement for sheet metal parts.
文摘Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solve some high-dimensional problems,feature selection is carried out in limited training samples,and effective features are selected.This paper focuses on two Relief feature selection algorithms:Relief and ReliefF algorithm.The differences between them and their respective applicable scopes are analyzed.Based on Relief algorithm,the high weight feature subset is obtained,and the correlation between features is calculated according to the mutual information distance measure,and the high redundant features are removed to obtain the feature subset with higher quality.Experimental results on six datasets show the effectiveness of our method.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
文摘Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.
文摘In order to improve the accuracy of escalator sprocket bearing fault diagnosis,the problem of the feature extraction method of bearing vibration signal is addressed.In this paper,empirical mode is used to decompose the original signal,and the optimal modal component among the multiple modal components is obtained after the optimization decomposition is selected by the envelope spectrum method,and the multi-angle feature measure is introduced to extract the fault characteristic value.According to the vibration characteristics of the bearing vibration signal data,a bearing signal feature group that is more inclined to the fault feature category information is established,which avoids the absolute problem of extracting a single metric feature.The fuzzy C-means clustering algorithm is used to cluster the sample data with similar characteristics into the same cluster area,which effectively solves the problem that a single measurement analysis cannot characterize the complex internal characteristics ofthe bearing vibration signal.
基金supported by the National Natural Science Foundation of China (50836007, 10921062, 10772016)
文摘The aerodynamic aspects of indirect thrust measurement by the impulse method have been studied both experimentally and numerically. The underlying basic aerodynamic principle is outlined, the phenomena in subsonic, supersonic and arc-heated jets are explored, and factors affecting the accuracy of the method are studied and discussed. Results show that the impulse method is reliable for indirect thrust measurement if certain basic requirements are met, and a simple guideline for its proper application is given.
文摘A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.
基金supported by the National Natural Science Foundation of China(No. 51975293)the Aeronautical Science Foundation of China (No. 2019ZD052010)。
文摘The visual inspection is an economical and effective method for welding. For measuring the feature sizes of grooves,a method based on line structured light is presented. Firstly,an adaptive algorithm to extract the subpixel centerline of structured light stripes is introduced to deal with the uneven width and grayscale distributions of laser stripes,which is based on the quadratic weighted grayscale centroid. By means of region-of-interest(ROI)division and image difference,an image preprocessing algorithm is developed for filtering noise and improving image quality. Furthermore,to acquire geometrical dimensions of various grooves and groove types precisely,the subpixel feature point extraction algorithm of grooves is designed. Finally, experimental results of feature size measuring show that the absolute error of measurement is 0.031—0.176 mm,and the relative error of measurement is 0.2%—3.6%.
文摘An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various ir-relevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and in-terpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most im-portant and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA041403)the National Natural Science Foundation of China(No.60905061)the National Natural Science Foundation of Tianjin(No.08JCYBJC12700)
文摘In this paper,a method combining perspective-n-point(PnP) and novel iteration algorithm is developed to measure the pose of a target in high precision for Tele-LightSaber game.The PnP algorithm is used to obtain a rough pose,which is taken as the initial value of the iteration algorithm.The iteration algorithm utilizes the unit quaternions to represent the rotations.Then the result is optimized with Kalman filter.Considering the real-time and accuracy of the pose measurement,a fast feature extraction algorithm including object location,edge detection and corner detection is adopted to get the corners in high precision.The experiments and results verify the effectiveness of the proposed method.
基金National Science Foundation of China(Nos.41801388,41901397)。
文摘The existing multi-source contour matching studies have focused on the matching methods with consideration of topological relations and similarity measurement based on spatial Euclidean distance,while it is lack of taking the contour geometric features into account,which may lead to mismatching in map boundaries and areas with intensive contours or extreme terrain changes.In light of this,it is put forward that a matching strategy from coarse to precious based on the contour geometric features.The proposed matching strategy can be described as follows.Firstly,the point sequence is converted to feature sequence according to a feature descriptive function based on curvature and angle of normal vector.Then the level of similarity among multi-source contours is calculated by using the longest common subsequence solution.Accordingly,the identical contours could be matched based on the above calculated results.In the experiment for the proposed method,the reliability and efficiency of the matching method are verified using simulative datasets and real datasets respectively.It has been proved that the proposed contour matching strategy has a high matching precision and good applicability.
基金Supported by National Natural Science Foundation of China(60575036),Natural Science Foundation of Heilongjiang Province of China(F0316),the Science and Technology Foundation for Innovative Talents of Harbin City of China(2007RFXXG023),and the Science Foundation for Top Talents with the Spirit of Innovation of Harbin University of Science and Technology
基金Supported by the National Natural Science Foundation of China (60972138)
文摘Based on an electrical resistance tomography(ERT) sensor and the data mining technology,a new voidage measurement method is proposed for air-water two-phase flow.The data mining technology used in this work is a least squares support vector machine(LS-SVM) algorithm together with the feature extraction method,and three feature extraction methods are tested:principal component analysis(PCA),partial least squares(PLS) and independent component analysis(ICA).In the practical voidage measurement process,the flow pattern is firstly identified directly from the conductance values obtained by the ERT sensor.Then,the appropriate voidage measurement model is selected according to the flow pattern identification result.Finally,the voidage is calculated.Experimental results show that the proposed method can measure the voidage effectively,and the measurement accuracy and speed are satisfactory.Compared with the conventional voidage measurement methods based on ERT,the proposed method doesn't need any image reconstruction process,so it has the advantage of good real-time performance.Due to the introduction of flow pattern identification,the influence of flow pattern on the voidage measurement is overcome.Besides,it is demonstrated that the LS-SVM method with PLS feature extraction presents the best measurement performance among the tested methods.
文摘With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.
文摘To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.
文摘According to the basic problem of industrial production, the paper presents a monocular camera and automatic annotation ranging scheme with a ruler. The scheme eliminates a series of complex operation steps frequently used for image location of the calibration, image correction, it has simple implementation and has successfully realized precise ranging by using digital image processing technology. From the beginning of the analysis of image edge detection, edge detection principle and some common edge detection operators, and proposes an improved multi-scale edge detection algorithm, then according to the particularity of the edge proposed new edge thinning algorithm, finally mark the target point through the feature extraction, calculate the final results of fault location.
基金This research was supported by the National Natural Science Foundation of China(61963012,61961014)the Natural Science Foundation of Hainan Province,China(619QN195,618QN218)+1 种基金the Key R&D Project of Hainan Province,China(ZDYF2018015)Collaborative Innovation Fund Project of Tianjin University-Hainan University(HDTDU201907).
文摘The morphological features of fish,such as the body length,the body width,the caudal peduncle length,the caudal peduncle width,the pupil diameter,and the eye diameter are very important indicators in smart mariculture.Therefore,the accurate measurement of the morphological features is of great significance.However,the existing measurement methods mainly rely on manual measurement,which is operationally complex,low efficiency,and high subjectivity.To address these issues,this paper proposes a scheme for segmenting fish image and measuring fish morphological features indicators based on Mask R-CNN.Firstly,the fish body images are acquired by a home-made image acquisition device.Then,the fish images are preprocessed and labeled,and fed into the Mask R-CNN for training.Finally,the trained model is used to segment fish image,thus the morphological features indicators of the fish can be obtained.The experimental results demonstrate that the proposed scheme can segment the fish body in pure and complex backgrounds with remarkable performance.In pure background,the average relative errors(AREs)of all indicators measured all are less than 2.8%,and the AREs of body length and body width are less than 0.8%.In complex background,the AREs of all indicators are less than 3%,and the AREs of body length and body width is less than 1.8%.2020 China Agricultural University.Production and hosting by Elsevier B.V.on behalf of KeAi.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).1.Introduction With the advancing of its scientific and technological capabilities,China has made great achievements in the mariculture.The production accounts for more than 70%of the world’s overall mariculture output[1].The measurement of body length,body width and other morphological features of fish have wide application prospects in smart mariculture.Due to the difference in the quality and feeding ability of the Juvenile fish,the growth of the fish in the same pond is significantly different after a period of growth.Then,the fish needs to be classified.Grading can make fish grow better and improve feed utilization[2].The fish body length and body width are closely related to the weight of the fish.In the mariculture,the fishermen judge the growth of the fish by collecting the morphological feature of the fish,and use the information as an important reference for feeding,fishing and classification[3].At present,most of the measurement methods of fish body morphological features are manual,the operator usesmeasuring ruler to measure manually.It requires high technical level,and has high labor intensity and low efficiency.Furthermore,https://doi.