In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
针对军事和民用领域持续增长的定位需求,提出基于升空大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)平台的波束域无源定位方法,该方法能够充分结合升空平台的空地视距(Line of Sight,LoS)传输特点和大规模MIMO技术的高空间...针对军事和民用领域持续增长的定位需求,提出基于升空大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)平台的波束域无源定位方法,该方法能够充分结合升空平台的空地视距(Line of Sight,LoS)传输特点和大规模MIMO技术的高空间分辨率优势,通过挖掘升空大规模MIMO平台接收信号的波束域相关特征实现目标角度和位置信息的低复杂度估计。数值仿真结果表明,所提方法能够实现接近亚米级的定位精度,从而验证了所提方法的有效性。展开更多
Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fi...Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fixed relaying protocols, amplify-and-forward(AF) and decode-and-forward(DF), have their own advantages and disadvantages, i.e. AF performs better than DF for low signal-to-noise ratio(SNR) region, while the reverse is true for high SNR region. Therefore, this paper proposes an SNR-adaptive forward(SAF) relaying scheme obtaining the advantages of both AF and DF. Furthermore, the proposed SAF does not need to switch between AF and DF when SNR changes. The main idea is to adaptively derive the soft information at the cooperative relay nodes based on the information of the received signal and the SNR. Besides, based on the theoretical analysis and the simulation results, it is affirmed that the proposed SAF achieves superior performance than both AF and DF for all SNRs. Moreover, the performance gain would be improved with the increasing number of parallel cooperative relay nodes.展开更多
Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated i...Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated information networks will converge to a whole fully connected information network to provide more flexible and reliable services on a world scale. Regarding their great successes in existing systems, multiantenna technologies will be of critical importance for the realization of SGINs and multi-antenna technologies are definitely one of the most important enabling technologies for future converged SGINs. In this article, a comprehensive overview on multi-antenna technologies is given. We first investigate multi-antenna technologies from a theoretical viewpoint. It is shown that we can understand multi-antenna technologies in a general and unified point of view. This fact has two-fold meanings. First, the research on multi-antennas can help us understand the relationships between different technologies e.g., OFDMA, CDMA, etc. On the other hand,multi-antenna technologies are easy to integrate into various information systems. Following that, we discuss in depth the potentials and challenges of the multi-antenna technologies on different platforms and in different applications case by case. More specifically, we investigate spaceborne multi-antenna technologies, airborne multi-antenna technologies, shipborne multi-antenna technologies, etc. Moreover, the combinations of multiantenna technologies with other advanced wireless technologies e.g., physical layer network coding, cooperative communication, etc., are also elaborated.展开更多
User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can...User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can be improved by performing receive antenna selection(RAS) to increase sum rate.In this paper,a joint user and antenna selection algorithm,which performs user selection for sum rate maximization in the first stage and then performs antenna selection in the second stage,is proposed.The antenna selection process alternately drops one antenna with the poorest channel quality based on maximum determinant ranking(MDR) from the users selected during the first stage and activates one antenna with the maximum norm of projected channel from the remaining users.Simulation results show that the proposed algorithm significantly outperforms the algorithm only performing user selection as well as the algorithm combining user selection with MDR receive antenna selection in terms of sum rate.展开更多
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
文摘针对军事和民用领域持续增长的定位需求,提出基于升空大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)平台的波束域无源定位方法,该方法能够充分结合升空平台的空地视距(Line of Sight,LoS)传输特点和大规模MIMO技术的高空间分辨率优势,通过挖掘升空大规模MIMO平台接收信号的波束域相关特征实现目标角度和位置信息的低复杂度估计。数值仿真结果表明,所提方法能够实现接近亚米级的定位精度,从而验证了所提方法的有效性。
基金supported in part by the National Natural Science Foundation of China 61501461, 61471269, 71232006, and 61533019the Early Career Development Award of SKLMCCS (Y3S9021F34)
文摘Multiple-input multiple-output(MIMO) and cooperative communications have been attracted great attention for the improvements of communication capacity, power consumption, and transmission coverage. The conventional fixed relaying protocols, amplify-and-forward(AF) and decode-and-forward(DF), have their own advantages and disadvantages, i.e. AF performs better than DF for low signal-to-noise ratio(SNR) region, while the reverse is true for high SNR region. Therefore, this paper proposes an SNR-adaptive forward(SAF) relaying scheme obtaining the advantages of both AF and DF. Furthermore, the proposed SAF does not need to switch between AF and DF when SNR changes. The main idea is to adaptively derive the soft information at the cooperative relay nodes based on the information of the received signal and the SNR. Besides, based on the theoretical analysis and the simulation results, it is affirmed that the proposed SAF achieves superior performance than both AF and DF for all SNRs. Moreover, the performance gain would be improved with the increasing number of parallel cooperative relay nodes.
基金supported in part by National Scientific Foundation of China for Young Scholars(Grant Nos.61301088,61301089)
文摘Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks(SGINs), the traditional various kinds of separated information networks will converge to a whole fully connected information network to provide more flexible and reliable services on a world scale. Regarding their great successes in existing systems, multiantenna technologies will be of critical importance for the realization of SGINs and multi-antenna technologies are definitely one of the most important enabling technologies for future converged SGINs. In this article, a comprehensive overview on multi-antenna technologies is given. We first investigate multi-antenna technologies from a theoretical viewpoint. It is shown that we can understand multi-antenna technologies in a general and unified point of view. This fact has two-fold meanings. First, the research on multi-antennas can help us understand the relationships between different technologies e.g., OFDMA, CDMA, etc. On the other hand,multi-antenna technologies are easy to integrate into various information systems. Following that, we discuss in depth the potentials and challenges of the multi-antenna technologies on different platforms and in different applications case by case. More specifically, we investigate spaceborne multi-antenna technologies, airborne multi-antenna technologies, shipborne multi-antenna technologies, etc. Moreover, the combinations of multiantenna technologies with other advanced wireless technologies e.g., physical layer network coding, cooperative communication, etc., are also elaborated.
基金the National Science and Technology Major Project (No.2009ZX03002-003)
文摘User selection is necessary for multiuser multiple-input multiple-output(MIMO) downlink systems with block diagonalization(BD) due to the limited free spatial transmit dimensions.The pure user selection algorithms can be improved by performing receive antenna selection(RAS) to increase sum rate.In this paper,a joint user and antenna selection algorithm,which performs user selection for sum rate maximization in the first stage and then performs antenna selection in the second stage,is proposed.The antenna selection process alternately drops one antenna with the poorest channel quality based on maximum determinant ranking(MDR) from the users selected during the first stage and activates one antenna with the maximum norm of projected channel from the remaining users.Simulation results show that the proposed algorithm significantly outperforms the algorithm only performing user selection as well as the algorithm combining user selection with MDR receive antenna selection in terms of sum rate.