In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space...In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.展开更多
The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distributi...The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distribution to price European options is that a fat tail can lead to a deviation in one integral required for option pricing. We use a distribution called logarithmic truncated t-distribution to price European options. A risk neutral valuation method was used to obtain a European option pricing model with logarithmic truncated t-distribution.展开更多
This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model estab...This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.展开更多
In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price proc...In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price process is modeled through a jump-diffusion process which is correlated to the loss process, the interest rate process and the default intensity process are modeled through the Vasicek model: We derive the closed form formulae for pricing catastrophe options in a reduced form model. Furthermore, we make some numerical analysis on the explicit formulae.展开更多
Reserve estimation is a key to find the correct NPV in a mining project. The most important factor in reserve estimation is the metal price. Metal price fluctuations in recent years were exaggerated, and imposed a hig...Reserve estimation is a key to find the correct NPV in a mining project. The most important factor in reserve estimation is the metal price. Metal price fluctuations in recent years were exaggerated, and imposed a high degree of uncertainty to the reserve estimation, and in consequence to the whole mine planning procedure. Real option approach is an efficient method of decision making in the uncertain conditions. This approach has been used for evaluation of defined natural resources projects until now. This study considering the metal price uncertainty used real option approach to prepare a methodology for reserve estimation in open pit mines. This study was done on a copper cylindrical deposit, but the achieved methodology can be adjusted for all kinds of deposits. This methodology was comprehensively described through the examples in such a manner that can be used by the mine planners.展开更多
The primary goal of this paper is to price European options in the Merton's frame- work with underlying assets following jump-diffusion using fuzzy set theory. Owing to the vague fluctuation of the real financial mar...The primary goal of this paper is to price European options in the Merton's frame- work with underlying assets following jump-diffusion using fuzzy set theory. Owing to the vague fluctuation of the real financial market, the average jump rate and jump sizes cannot be recorded or collected accurately. So the main idea of this paper is to model the rate as a triangular fuzzy number and jump sizes as fuzzy random variables and use the property of fuzzy set to deduce two different jump-diffusion models underlying principle of rational expectations equilibrium price. Unlike many conventional models, the European option price will now turn into a fuzzy number. One of the major advantages of this model is that it allows investors to choose a reasonable European option price under an acceptable belief degree. The empirical results will serve as useful feedback information for improvements on the proposed model.展开更多
In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and mar...In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and market coefficients are deterministic functions, the pricing formula of European call option was explicitly derived by the method of the stochastic calculus of tile fractional Brownian motion. A result about fractional Clark derivative was also obtained.展开更多
A barrier option valuation model with stochastic barrier which was regarded as the main feature of the model was developed under the Hull-White interest rate model.The purpose of this study was to deal with the stocha...A barrier option valuation model with stochastic barrier which was regarded as the main feature of the model was developed under the Hull-White interest rate model.The purpose of this study was to deal with the stochastic barrier by means of partial differential equation methods and then derive the exact analytical solutions of the barrier options.Furthermore,a numerical example was given to show how to apply this model to pricing one structured product in realistic market.Therefore,this model can provide new insight for future research on structured products involving barrier options.展开更多
The problem o f analytically pricing the discrete monitored European barrier options is studied under the assumption of the Black-Scholes market.First,using variable transformation,the mean vector and covariance matri...The problem o f analytically pricing the discrete monitored European barrier options is studied under the assumption of the Black-Scholes market.First,using variable transformation,the mean vector and covariance matrix of multi-dimensional marginal distribution are given.Secondly,the analytica pricing formulas of the discrete monitored upknock-out European call option and the discrete monitored down-knock-out European put option a e obtained by using the conditional probability and the characteristics o f the multidimensional normal distribution.Finally,the effects of the discrete monitoring barriers on the prices of the barrier optionsare discussed and analyzed.The research results state that the price o f the discrete monitored up-knock-out European call option mcreases with the increase in the up barrier,a d the price o f the discrete monitored down-knock-out European put option decreases with the increase in the down barrier.展开更多
Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine lear...Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine learning techniques have been designed and developed to deal with the problem of predicting the future trend of option price. In this paper, we compare the effectiveness of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models for the prediction of option price. Both models are tested with a benchmark publicly available dataset namely SPY option price-2015 in both testing and training phases. The converted data through Principal Component Analysis (PCA) is used in both models to achieve better prediction accuracy. On the other hand, the entire dataset is partitioned into two groups of training (70%) and test sets (30%) to avoid overfitting problem. The outcomes of the SVM model are compared with those of the ANN model based on the root mean square errors (RMSE). It is demonstrated by the experimental results that the ANN model performs better than the SVM model, and the predicted option prices are in good agreement with the corresponding actual option prices.展开更多
Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermedi...Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermediate dividends, the Black_Scholes model is generalized to the case where the risk_less asset (bond or bank account) earns a time_dependent interest rate and risk asset (stock) has time_dependent the continuously compounding expected rate of return, volatility. In these cases the accurate pricing formula and put_call parity of European option are obtained. The general approach of option pricing is given for the general Black_Scholes of the risk asset (stock) has the continuously compounding expected rate of return, volatility. The accurate pricing formula and put_call parity of European option on a stock whose price process is driven by general Ornstein_Uhlenback (O_U) process are given by actuarial approach.展开更多
This paper proposes and makes a study of a new model(called the 3/2 plus jumps model) for VIX option pricing. The model allows the mean-reversion speed and volatility of volatility to be highly sensitive to the actual...This paper proposes and makes a study of a new model(called the 3/2 plus jumps model) for VIX option pricing. The model allows the mean-reversion speed and volatility of volatility to be highly sensitive to the actual level of VIX. In particular, the positive volatility skew is addressed by the 3/2 plus jumps model. Daily calibration is used to prove that the proposed model preserves its validity and reliability for both in-sample and out-of-sample tests.The results show that the models are capable of fitting the market price while generating positive volatility skew.展开更多
We present a parallel algorithm that computes the ask and bid prices of an American option when proportional transaction costs apply to trading in the underlying asset. The algorithm computes the prices on recombining...We present a parallel algorithm that computes the ask and bid prices of an American option when proportional transaction costs apply to trading in the underlying asset. The algorithm computes the prices on recombining binomial trees, and is designed for modern multi-core processors. Although parallel option pricing has been well studied, none of the existing approaches takes transaction costs into consideration. The algorithm that we propose partitions a binomial tree into blocks. In any round of computation a block is further partitioned into regions which are assigned to distinct processors. To minimise load imbalance the assignment of nodes to processors is dynamically adjusted before each new round starts. Synchronisation is required both within a round and between two successive rounds. The parallel speedup of the algorithm is proportional to the number of processors used. The parallel algorithm was implemented in C/C++ via POSIX Threads, and was tested on a machine with 8 processors. In the pricing of an American put option, the parallel speedup against an efficient sequential implementation was 5.26 using 8 processors and 1500 time steps, achieving a parallel efficiency of 65.75%.展开更多
This paper presents a method to solve the American option pricing problem in the Black Scholes framework that generalizes the Barone-Adesi, Whaley method [1]. An auxiliary parameter is introduced in the American optio...This paper presents a method to solve the American option pricing problem in the Black Scholes framework that generalizes the Barone-Adesi, Whaley method [1]. An auxiliary parameter is introduced in the American option pricing problem. Power series expansions in this parameter of the option price and of the corresponding free boundary are derived. These series expansions have the Baroni-Adesi, Whaley solution of the American option pricing problem as zero-th order term. The coefficients of the option price series are explicit formulae. The partial sums of the free boundary series are determined solving numerically nonlinear equations that depend from the time variable as a parameter. Numerical experiments suggest that the series expansions derived are convergent. The evaluation of the truncated series expansions on a grid of values of the independent variables is easily parallelizable. The cost of computing the n-th order truncated series expansions is approximately proportional to n as n goes to infinity. The results obtained on a set of test problems with the first and second order approximations deduced from the previous series expansions outperform in accuracy and/or in computational cost the results obtained with several alternative methods to solve the American option pricing problem [1]-[3]. For example when we consider options with maturity time between three and ten years and positive cost of carrying parameter (i.e. when the continuous dividend yield is smaller than the risk free interest rate) the second order approximation of the free boundary obtained truncating the series expansions improves substantially the Barone-Adesi, Whaley free boundary [1]. The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an interactive application and an app that helps the understanding of the paper. A general reference to the work of the authors and of their coauthors in mathematical finance is the website: http://www.econ.univpm.it/recchioni/finance.展开更多
We develop two new pricing formulae for European options. The purpose of these formulae is to better understand the impact of each term of the model, as well as improve the speed of the calculations. We consider the S...We develop two new pricing formulae for European options. The purpose of these formulae is to better understand the impact of each term of the model, as well as improve the speed of the calculations. We consider the SABR model (with β=1) of stochastic volatility, which we analyze by tools from Malliavin Calculus. We follow the approach of Alòs et al. (2006) who showed that under stochastic volatility framework, the option prices can be written as the sum of the classic Hull-White (1987) term and a correction due to correlation. We derive the Hull-White term, by using the conditional density of the average volatility, and write it as a two-dimensional integral. For the correction part, we use two different approaches. Both approaches rely on the pairing of the exponential formula developed by Jin, Peng, and Schellhorn (2016) with analytical calculations. The first approach, which we call “Dyson series on the return’s idiosyncratic noise” yields a complete series expansion but necessitates the calculation of a 7-dimensional integral. Two of these dimensions come from the use of Yor’s (1992) formula for the joint density of a Brownian motion and the time-integral of geometric Brownian motion. The second approach, which we call “Dyson series on the common noise” necessitates the calculation of only a one-dimensional integral, but the formula is more complex. This research consisted of both analytical derivations and numerical calculations. The latter show that our formulae are in general more exact, yet more time-consuming to calculate, than the first order expansion of Hagan et al. (2002).展开更多
This paper investigates several competing procedures for computing the prices of vanilla European options, such as puts, calls and binaries, in which the underlying model has a characteristic function that is known in...This paper investigates several competing procedures for computing the prices of vanilla European options, such as puts, calls and binaries, in which the underlying model has a characteristic function that is known in semi-closed form. The algorithms investigated here are the half-range Fourier cosine series, the half-range Fourier sine series and the full-range Fourier series. Their performance is assessed in simulation experiments in which an analytical solution is available and also for a simple affine model of stochastic volatility in which there is no closed-form solution. The results suggest that the half-range sine series approximation is the least effective of the three proposed algorithms. It is rather more difficult to distinguish between the performance of the half-range cosine series and the full-range Fourier series. However there are two clear differences. First, when the interval over which the density is approximated is relatively large, the full-range Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter in pricing out-of-the-money call options, in particular with maturities of three months or less. Second, the computational time required by the half-range Fourier cosine series is uniformly longer than that required by the full-range Fourier series for an interval of fixed length. Taken together, these two conclusions make a case for pricing options using a full-range range Fourier series as opposed to a half-range Fourier cosine series if a large number of options are to be priced in as short a time as possible.展开更多
This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an implied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla...This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an implied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla call options on the S&P 500 index are recreated fitting the best volatility-drift combination in this new EBS. Using a likelihood ratio test, the implied drift parameter is seen to be quite significant in explaining volatility smiles. The implied drift parameter is sufficiently small to be undetectable via historical pricing analysis, suggesting that drift is best considered as an implied parameter rather than a historically-fit one. An overview of option-pricing models is provided as background.展开更多
A new method using nonlinear regression to approximate the option price based on approximate dynamic programming is proposed. As a result a representation of the American option price is obtained as a solution to the ...A new method using nonlinear regression to approximate the option price based on approximate dynamic programming is proposed. As a result a representation of the American option price is obtained as a solution to the dual minimization problem. In addition, an available Q-value iteration algorithm in practice is given.展开更多
In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to opt...In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the volatility of the underlying risky assets and the N-state compensator,depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM(minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.展开更多
A rational evaluation on an investment project forms the basis of a right investment decision making. The discounted cash flow (DCF for short) method is usually used as a traditional evaluation method for a project in...A rational evaluation on an investment project forms the basis of a right investment decision making. The discounted cash flow (DCF for short) method is usually used as a traditional evaluation method for a project investment. However, as the mining investment is influenced by many uncertainties, DCF method cannot take into account these uncertainties and often underestimates the value of an investment project. Based on the option pricing theory of the modern financial assets, the characteristics of a real project investment are discussed, and the management option of mine managers and its pricing method are described.展开更多
基金supported by the Jiangsu University Philosophy and Social Science Research Project(Grant No.2019SJA1326).
文摘In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.
文摘The t-distribution has a “fat tail” feature, which is more suitable than the normal probability density function to describe the distribution characteristics of return on assets. The difficulty of using t-distribution to price European options is that a fat tail can lead to a deviation in one integral required for option pricing. We use a distribution called logarithmic truncated t-distribution to price European options. A risk neutral valuation method was used to obtain a European option pricing model with logarithmic truncated t-distribution.
基金Supported by the Fundamental Research Funds of Lanzhou University of Finance and Economics(Lzufe2017C-09)
文摘This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.
基金supported by the National Natural Science Foundation of China(11371274)
文摘In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price process is modeled through a jump-diffusion process which is correlated to the loss process, the interest rate process and the default intensity process are modeled through the Vasicek model: We derive the closed form formulae for pricing catastrophe options in a reduced form model. Furthermore, we make some numerical analysis on the explicit formulae.
文摘Reserve estimation is a key to find the correct NPV in a mining project. The most important factor in reserve estimation is the metal price. Metal price fluctuations in recent years were exaggerated, and imposed a high degree of uncertainty to the reserve estimation, and in consequence to the whole mine planning procedure. Real option approach is an efficient method of decision making in the uncertain conditions. This approach has been used for evaluation of defined natural resources projects until now. This study considering the metal price uncertainty used real option approach to prepare a methodology for reserve estimation in open pit mines. This study was done on a copper cylindrical deposit, but the achieved methodology can be adjusted for all kinds of deposits. This methodology was comprehensively described through the examples in such a manner that can be used by the mine planners.
基金Supported by the Key Grant Project of Chinese Ministry of Education(309018)National Natural Science Foundation of China(70973104 and 11171304)the Zhejiang Natural Science Foundation of China(Y6110023)
文摘The primary goal of this paper is to price European options in the Merton's frame- work with underlying assets following jump-diffusion using fuzzy set theory. Owing to the vague fluctuation of the real financial market, the average jump rate and jump sizes cannot be recorded or collected accurately. So the main idea of this paper is to model the rate as a triangular fuzzy number and jump sizes as fuzzy random variables and use the property of fuzzy set to deduce two different jump-diffusion models underlying principle of rational expectations equilibrium price. Unlike many conventional models, the European option price will now turn into a fuzzy number. One of the major advantages of this model is that it allows investors to choose a reasonable European option price under an acceptable belief degree. The empirical results will serve as useful feedback information for improvements on the proposed model.
基金National Natural Science Foundation of China(No.10826098)Natural Science Foundation of Anhui Province,China(No.090416225)Anhui Natural Science Foundation of Universities,China(No.KJ2010A037)
文摘In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and market coefficients are deterministic functions, the pricing formula of European call option was explicitly derived by the method of the stochastic calculus of tile fractional Brownian motion. A result about fractional Clark derivative was also obtained.
基金National Natural Science Foundations of China(Nos.11471175,11171221)
文摘A barrier option valuation model with stochastic barrier which was regarded as the main feature of the model was developed under the Hull-White interest rate model.The purpose of this study was to deal with the stochastic barrier by means of partial differential equation methods and then derive the exact analytical solutions of the barrier options.Furthermore,a numerical example was given to show how to apply this model to pricing one structured product in realistic market.Therefore,this model can provide new insight for future research on structured products involving barrier options.
基金The National Natural Science Foundation of China(No.71273139)the Soft Science Foundation of China(No.2010GXS5B147)the National Public Sector(Weather)Special Fund(No.GYHY201106019)
文摘The problem o f analytically pricing the discrete monitored European barrier options is studied under the assumption of the Black-Scholes market.First,using variable transformation,the mean vector and covariance matrix of multi-dimensional marginal distribution are given.Secondly,the analytica pricing formulas of the discrete monitored upknock-out European call option and the discrete monitored down-knock-out European put option a e obtained by using the conditional probability and the characteristics o f the multidimensional normal distribution.Finally,the effects of the discrete monitoring barriers on the prices of the barrier optionsare discussed and analyzed.The research results state that the price o f the discrete monitored up-knock-out European call option mcreases with the increase in the up barrier,a d the price o f the discrete monitored down-knock-out European put option decreases with the increase in the down barrier.
文摘Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine learning techniques have been designed and developed to deal with the problem of predicting the future trend of option price. In this paper, we compare the effectiveness of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models for the prediction of option price. Both models are tested with a benchmark publicly available dataset namely SPY option price-2015 in both testing and training phases. The converted data through Principal Component Analysis (PCA) is used in both models to achieve better prediction accuracy. On the other hand, the entire dataset is partitioned into two groups of training (70%) and test sets (30%) to avoid overfitting problem. The outcomes of the SVM model are compared with those of the ANN model based on the root mean square errors (RMSE). It is demonstrated by the experimental results that the ANN model performs better than the SVM model, and the predicted option prices are in good agreement with the corresponding actual option prices.
文摘Using physical probability measure of price process and the principle of fair premium, the results of Mogens Bladt and Hina Hviid Rydberg are generalized. In two cases of paying intermediate divisends and no intermediate dividends, the Black_Scholes model is generalized to the case where the risk_less asset (bond or bank account) earns a time_dependent interest rate and risk asset (stock) has time_dependent the continuously compounding expected rate of return, volatility. In these cases the accurate pricing formula and put_call parity of European option are obtained. The general approach of option pricing is given for the general Black_Scholes of the risk asset (stock) has the continuously compounding expected rate of return, volatility. The accurate pricing formula and put_call parity of European option on a stock whose price process is driven by general Ornstein_Uhlenback (O_U) process are given by actuarial approach.
基金Supported by the National Natural Science Foundation of China(71371168,11571310)
文摘This paper proposes and makes a study of a new model(called the 3/2 plus jumps model) for VIX option pricing. The model allows the mean-reversion speed and volatility of volatility to be highly sensitive to the actual level of VIX. In particular, the positive volatility skew is addressed by the 3/2 plus jumps model. Daily calibration is used to prove that the proposed model preserves its validity and reliability for both in-sample and out-of-sample tests.The results show that the models are capable of fitting the market price while generating positive volatility skew.
文摘We present a parallel algorithm that computes the ask and bid prices of an American option when proportional transaction costs apply to trading in the underlying asset. The algorithm computes the prices on recombining binomial trees, and is designed for modern multi-core processors. Although parallel option pricing has been well studied, none of the existing approaches takes transaction costs into consideration. The algorithm that we propose partitions a binomial tree into blocks. In any round of computation a block is further partitioned into regions which are assigned to distinct processors. To minimise load imbalance the assignment of nodes to processors is dynamically adjusted before each new round starts. Synchronisation is required both within a round and between two successive rounds. The parallel speedup of the algorithm is proportional to the number of processors used. The parallel algorithm was implemented in C/C++ via POSIX Threads, and was tested on a machine with 8 processors. In the pricing of an American put option, the parallel speedup against an efficient sequential implementation was 5.26 using 8 processors and 1500 time steps, achieving a parallel efficiency of 65.75%.
文摘This paper presents a method to solve the American option pricing problem in the Black Scholes framework that generalizes the Barone-Adesi, Whaley method [1]. An auxiliary parameter is introduced in the American option pricing problem. Power series expansions in this parameter of the option price and of the corresponding free boundary are derived. These series expansions have the Baroni-Adesi, Whaley solution of the American option pricing problem as zero-th order term. The coefficients of the option price series are explicit formulae. The partial sums of the free boundary series are determined solving numerically nonlinear equations that depend from the time variable as a parameter. Numerical experiments suggest that the series expansions derived are convergent. The evaluation of the truncated series expansions on a grid of values of the independent variables is easily parallelizable. The cost of computing the n-th order truncated series expansions is approximately proportional to n as n goes to infinity. The results obtained on a set of test problems with the first and second order approximations deduced from the previous series expansions outperform in accuracy and/or in computational cost the results obtained with several alternative methods to solve the American option pricing problem [1]-[3]. For example when we consider options with maturity time between three and ten years and positive cost of carrying parameter (i.e. when the continuous dividend yield is smaller than the risk free interest rate) the second order approximation of the free boundary obtained truncating the series expansions improves substantially the Barone-Adesi, Whaley free boundary [1]. The website: http://www.econ.univpm.it/recchioni/finance/w20 contains material including animations, an interactive application and an app that helps the understanding of the paper. A general reference to the work of the authors and of their coauthors in mathematical finance is the website: http://www.econ.univpm.it/recchioni/finance.
文摘We develop two new pricing formulae for European options. The purpose of these formulae is to better understand the impact of each term of the model, as well as improve the speed of the calculations. We consider the SABR model (with β=1) of stochastic volatility, which we analyze by tools from Malliavin Calculus. We follow the approach of Alòs et al. (2006) who showed that under stochastic volatility framework, the option prices can be written as the sum of the classic Hull-White (1987) term and a correction due to correlation. We derive the Hull-White term, by using the conditional density of the average volatility, and write it as a two-dimensional integral. For the correction part, we use two different approaches. Both approaches rely on the pairing of the exponential formula developed by Jin, Peng, and Schellhorn (2016) with analytical calculations. The first approach, which we call “Dyson series on the return’s idiosyncratic noise” yields a complete series expansion but necessitates the calculation of a 7-dimensional integral. Two of these dimensions come from the use of Yor’s (1992) formula for the joint density of a Brownian motion and the time-integral of geometric Brownian motion. The second approach, which we call “Dyson series on the common noise” necessitates the calculation of only a one-dimensional integral, but the formula is more complex. This research consisted of both analytical derivations and numerical calculations. The latter show that our formulae are in general more exact, yet more time-consuming to calculate, than the first order expansion of Hagan et al. (2002).
文摘This paper investigates several competing procedures for computing the prices of vanilla European options, such as puts, calls and binaries, in which the underlying model has a characteristic function that is known in semi-closed form. The algorithms investigated here are the half-range Fourier cosine series, the half-range Fourier sine series and the full-range Fourier series. Their performance is assessed in simulation experiments in which an analytical solution is available and also for a simple affine model of stochastic volatility in which there is no closed-form solution. The results suggest that the half-range sine series approximation is the least effective of the three proposed algorithms. It is rather more difficult to distinguish between the performance of the half-range cosine series and the full-range Fourier series. However there are two clear differences. First, when the interval over which the density is approximated is relatively large, the full-range Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter in pricing out-of-the-money call options, in particular with maturities of three months or less. Second, the computational time required by the half-range Fourier cosine series is uniformly longer than that required by the full-range Fourier series for an interval of fixed length. Taken together, these two conclusions make a case for pricing options using a full-range range Fourier series as opposed to a half-range Fourier cosine series if a large number of options are to be priced in as short a time as possible.
文摘This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an implied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla call options on the S&P 500 index are recreated fitting the best volatility-drift combination in this new EBS. Using a likelihood ratio test, the implied drift parameter is seen to be quite significant in explaining volatility smiles. The implied drift parameter is sufficiently small to be undetectable via historical pricing analysis, suggesting that drift is best considered as an implied parameter rather than a historically-fit one. An overview of option-pricing models is provided as background.
文摘A new method using nonlinear regression to approximate the option price based on approximate dynamic programming is proposed. As a result a representation of the American option price is obtained as a solution to the dual minimization problem. In addition, an available Q-value iteration algorithm in practice is given.
基金Supported by the National Natural Science Foundation of China(11201221)Supported by the Natural Science Foundation of Jiangsu Province(BK2012468)
文摘In this paper, we consider a Markov switching Lévy process model in which the underlying risky assets are driven by the stochastic exponential of Markov switching Lévy process and then apply the model to option pricing and hedging. In this model, the market interest rate, the volatility of the underlying risky assets and the N-state compensator,depend on unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. We use the MEMM(minimal entropy martingale measure) as the equivalent martingale measure. The option price using this model is obtained by the Fourier transform method. We obtain a closed-form solution for the hedge ratio by applying the local risk minimizing hedging.
文摘A rational evaluation on an investment project forms the basis of a right investment decision making. The discounted cash flow (DCF for short) method is usually used as a traditional evaluation method for a project investment. However, as the mining investment is influenced by many uncertainties, DCF method cannot take into account these uncertainties and often underestimates the value of an investment project. Based on the option pricing theory of the modern financial assets, the characteristics of a real project investment are discussed, and the management option of mine managers and its pricing method are described.