Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely af...Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely affected by various error sources, including geometric imperfections, thermal deformations, load effects, and dynamic disturbances. The increasing demand for higher dimensional accuracy in various industrial applications has created the need to develop cost-effective methods for enhancing the overall performance of these mechanisms. Improving the accuracy of a MAS by upgrading the physical structure would lead to an exponential increase in manufacturing costs without totally eliminating geometrical deviations and thermal deformations of MAS components. Hence, the idea of reducing MAS’s error by a software-based alternative approach to provide real-time prediction and correction of geometric and thermally induced errors is considered a strategic step toward achieving the full potential of the MAS. This paper presents a structured approach designed to improve the accuracy of Cartesian MAS’s through software error compensation. Four steps are required to develop and implement this approach: (i) measurement of error components using a multidimensional laser interferometer system, (ii) tridimensional volumetric error mapping using rigid body kinematics, (iii) volumetric error prediction via an artificial neural network model, and finally (iv) implementation of the on-line error compensation. An illustrative example using a bridge type coordinate measuring machine is presented.展开更多
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co...The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.展开更多
By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (...By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.展开更多
Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attract...Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end...Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end-effector errors caused by the small deformation.This paper presents a method combined step kinematic calibration and linear forecast real-time error compensation in order to enhance the precision of a two degree-of-freedom(DOF) planar parallel manipulator of a hybrid machine tool.In the step kinematic calibration phase of the method,the end-effector errors caused by the errors of major constant geometrical parameters is compensated.The step kinematic calibration is based on the minimal linear combinations(MLCs) of the error parameters.All simple and feasible measurements in practice are given,and identification analysis of the set of the MLCs for each measurement is carried out.According to identification analysis results,both measurement costs and observability are considered,and a step calibration including step measurement,step identification and step error compensation is determined.The linear forecast real-time error compensation is used to compensate the end-effector errors caused by other parameters after the step kinematic calibration.Taking the advantages of the step kinematic calibration and the linear forecast real-time error compensation,a method for improving the precision of the 2-DOF planar parallel manipulator is developed.Experiment results show that the proposed method is robust and effective,so that the position errors are kept to the same order of the measurement noise.The presented method is attractive for the 2-DOF planar parallel manipulator and can be also applied to other parallel manipulators with fewer than six DOFs.展开更多
A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Base...A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.展开更多
3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-p...3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.展开更多
Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under...Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.展开更多
In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of ti...In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.展开更多
Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically afects the accuracy, reliability, and stability of identifcation results. In this paper, a c...Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically afects the accuracy, reliability, and stability of identifcation results. In this paper, a comparison study on kinematic calibration for a 3-DOF parallel manipulator with three error models is presented to investigate the relative merits of diferent error modeling methods. The study takes into consideration the inverse-kinematic error model, which ignores all passive joint errors, the geometric-constraint error model, which is derived by special geometric constraints of the studied RPR-equivalent parallel manipulator, and the complete-minimal error model, which meets the complete, minimal, and continuous criteria. This comparison focuses on aspects such as modeling complexity, identifcation accuracy, the impact of noise uncertainty, and parameter identifability. To facilitate a more intuitive comparison, simulations are conducted to draw conclusions in certain aspects, including accuracy, the infuence of the S joint, identifcation with noises, and sensitivity indices. The simulations indicate that the complete-minimal error model exhibits the lowest residual values, and all error models demonstrate stability considering noises. Hereafter, an experiment is conducted on a prototype using a laser tracker, providing further insights into the diferences among the three error models. The results show that the residual errors of this machine tool are signifcantly improved according to the identifed parameters, and the complete-minimal error model can approach the measurements by nearly 90% compared to the inverse-kinematic error model. The fndings pertaining to the model process, complexity, and limitations are also instructive for other parallel manipulators.展开更多
To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method a...To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.展开更多
This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector p...This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing. Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.展开更多
In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the resid...In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.展开更多
An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatur...An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatures of regularity, modularity and unidirectionaldata flow, this structure is well suited to VLSIimplementations. The length of the largest delay pathand area of this architecture are less compared to the bitparallel systolic multiplication architectures reportedearlier. The architecture is implemented using Austria Micro System's 0.35 μm CMOS (complementary metaloxide semiconductor) technology. This architecture canalso operate over both the dual-base and polynomialbase.展开更多
One of the important trends in precision machining is the development ofreal-time error compensation technique. The error compensation for multi-axis CNC machine tools isvery difficult and attractive. The modeling for...One of the important trends in precision machining is the development ofreal-time error compensation technique. The error compensation for multi-axis CNC machine tools isvery difficult and attractive. The modeling for the geometric error of five-axis CNC machine toolsbased on multi-body systems is proposed. And the key technique of the compensation―identifyinggeometric error parameters―is developed. The simulation of cutting workpiece to verify the modelingbased on the multi-body systems is also considered.展开更多
In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel gr...In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.展开更多
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p...The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.展开更多
Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equa...Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.展开更多
In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,takin...In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,taking a 5-prismatic-spherical-spherical(PSS)/universal-prismatic-universal(UPU)parallel mechanism as an example,the error model is established by a closed vector chain method,while its influence on the dynamic accuracy of the parallel mechanism is analyzed through numerical simulation.According to the structural and error characteristics of the parallel mechanism,a vector calibration algorithm is proposed to reduce the position and pose errors along the whole motion trajectory.Then,considering the elastic deformation of the rod,the rigid-flexible coupling dynamic equations of each component are established by combining the finite element method with the Lagrange method.The elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part,and the correctness of the model is verified by simulation.Moreover,the effect of component flexibility on the dimensionless root mean square error of the displacement,velocity and acceleration of the moving platform is investigated by using a Newmark method,and the mapping relationship of these dimensionless root mean square errors to dynamic accuracy is further studied.The research work provides a theoretical basis for the design of the parameter size of the prototype.展开更多
文摘Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely affected by various error sources, including geometric imperfections, thermal deformations, load effects, and dynamic disturbances. The increasing demand for higher dimensional accuracy in various industrial applications has created the need to develop cost-effective methods for enhancing the overall performance of these mechanisms. Improving the accuracy of a MAS by upgrading the physical structure would lead to an exponential increase in manufacturing costs without totally eliminating geometrical deviations and thermal deformations of MAS components. Hence, the idea of reducing MAS’s error by a software-based alternative approach to provide real-time prediction and correction of geometric and thermally induced errors is considered a strategic step toward achieving the full potential of the MAS. This paper presents a structured approach designed to improve the accuracy of Cartesian MAS’s through software error compensation. Four steps are required to develop and implement this approach: (i) measurement of error components using a multidimensional laser interferometer system, (ii) tridimensional volumetric error mapping using rigid body kinematics, (iii) volumetric error prediction via an artificial neural network model, and finally (iv) implementation of the on-line error compensation. An illustrative example using a bridge type coordinate measuring machine is presented.
基金supported by the Science Foundation of the Education Office of Gansu Province of Chinaunder Grant No.0914-01
文摘The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.
基金National Natural Science Foundation of China(No.51275486)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111420110005)
文摘By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.
基金supported by Tianjin Research Program of Application Foundation and Advanced Technology of China (Grant No.11JCZDJC22700)National Natural Science Foundation of China (GrantNo. 51075295,Grant No. 50675151)+1 种基金National High-tech Research and Development Program of China (863 Program,Grant No.2007AA042001)PhD Programs Foundation of Ministry of Education of China (Grant No. 20060056018)
文摘Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
基金supported by National Natural Science Foundation of China(Grant No. 50805140)National Hi-tech Research and Development Program of China(863 Program,Grant No. 2007AA04Z227)
文摘Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end-effector errors caused by the small deformation.This paper presents a method combined step kinematic calibration and linear forecast real-time error compensation in order to enhance the precision of a two degree-of-freedom(DOF) planar parallel manipulator of a hybrid machine tool.In the step kinematic calibration phase of the method,the end-effector errors caused by the errors of major constant geometrical parameters is compensated.The step kinematic calibration is based on the minimal linear combinations(MLCs) of the error parameters.All simple and feasible measurements in practice are given,and identification analysis of the set of the MLCs for each measurement is carried out.According to identification analysis results,both measurement costs and observability are considered,and a step calibration including step measurement,step identification and step error compensation is determined.The linear forecast real-time error compensation is used to compensate the end-effector errors caused by other parameters after the step kinematic calibration.Taking the advantages of the step kinematic calibration and the linear forecast real-time error compensation,a method for improving the precision of the 2-DOF planar parallel manipulator is developed.Experiment results show that the proposed method is robust and effective,so that the position errors are kept to the same order of the measurement noise.The presented method is attractive for the 2-DOF planar parallel manipulator and can be also applied to other parallel manipulators with fewer than six DOFs.
基金Preject 50225519 supported by the National Outstanding Youth Science Foundation of China
文摘A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.
基金supported by Program for New Century Excellent Talents in University of Henan Province (GrantNo, 2006HANCET-16)program for The Fund of Henan Polytechnic University Postgraduate’s Innovative Papers (Grant No, 644013)program for Young Talents of Henan Polytechnic University (Grant No,649035)
文摘3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.
文摘Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.
基金This work was supported by Natural Science Foundation of China and Shandong Province.
文摘In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.
基金Supported by National Key Research and Development Program of China(Grant No.2019YFA0709001)National Natural Science Foundation of China(Grant Nos.52022056,51875334,52205031 and 52205034)National Key Research and Development Program of China(Grant No.2017YFE0111300).
文摘Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically afects the accuracy, reliability, and stability of identifcation results. In this paper, a comparison study on kinematic calibration for a 3-DOF parallel manipulator with three error models is presented to investigate the relative merits of diferent error modeling methods. The study takes into consideration the inverse-kinematic error model, which ignores all passive joint errors, the geometric-constraint error model, which is derived by special geometric constraints of the studied RPR-equivalent parallel manipulator, and the complete-minimal error model, which meets the complete, minimal, and continuous criteria. This comparison focuses on aspects such as modeling complexity, identifcation accuracy, the impact of noise uncertainty, and parameter identifability. To facilitate a more intuitive comparison, simulations are conducted to draw conclusions in certain aspects, including accuracy, the infuence of the S joint, identifcation with noises, and sensitivity indices. The simulations indicate that the complete-minimal error model exhibits the lowest residual values, and all error models demonstrate stability considering noises. Hereafter, an experiment is conducted on a prototype using a laser tracker, providing further insights into the diferences among the three error models. The results show that the residual errors of this machine tool are signifcantly improved according to the identifed parameters, and the complete-minimal error model can approach the measurements by nearly 90% compared to the inverse-kinematic error model. The fndings pertaining to the model process, complexity, and limitations are also instructive for other parallel manipulators.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA041901 )the National Natural Science Foundation of China ( No. 50775117 )+1 种基金the National S&T Major Project ( No. 2009XZ04001-025 )the Technology Innovation Fund of AVIC ( No.2009E 13224 )
文摘To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.
文摘This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing. Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.
文摘In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.
文摘An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatures of regularity, modularity and unidirectionaldata flow, this structure is well suited to VLSIimplementations. The length of the largest delay pathand area of this architecture are less compared to the bitparallel systolic multiplication architectures reportedearlier. The architecture is implemented using Austria Micro System's 0.35 μm CMOS (complementary metaloxide semiconductor) technology. This architecture canalso operate over both the dual-base and polynomialbase.
基金This project is supported by National Natural Science Foundation of China (No.E059905019)
文摘One of the important trends in precision machining is the development ofreal-time error compensation technique. The error compensation for multi-axis CNC machine tools isvery difficult and attractive. The modeling for the geometric error of five-axis CNC machine toolsbased on multi-body systems is proposed. And the key technique of the compensation―identifyinggeometric error parameters―is developed. The simulation of cutting workpiece to verify the modelingbased on the multi-body systems is also considered.
基金This project is supported by Provincial Foundation for Young Scientists & Scholars Innovation of Fujian, China (No.0013K13004).
文摘In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.
基金Project(50375139) supported by the National Natural Science Foundation of ChinaProject(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
文摘The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2001AAA423300)Provincial Natural Science Foundation of Anhui,China(No.00043310)
文摘Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.
基金Supported by the National Natural Science Foundation of China(Grant Nos.U21A20122,51975523 and 51905481)the Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and technology Innovation Plan(Grant No.2020R403054).
文摘In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,taking a 5-prismatic-spherical-spherical(PSS)/universal-prismatic-universal(UPU)parallel mechanism as an example,the error model is established by a closed vector chain method,while its influence on the dynamic accuracy of the parallel mechanism is analyzed through numerical simulation.According to the structural and error characteristics of the parallel mechanism,a vector calibration algorithm is proposed to reduce the position and pose errors along the whole motion trajectory.Then,considering the elastic deformation of the rod,the rigid-flexible coupling dynamic equations of each component are established by combining the finite element method with the Lagrange method.The elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part,and the correctness of the model is verified by simulation.Moreover,the effect of component flexibility on the dimensionless root mean square error of the displacement,velocity and acceleration of the moving platform is investigated by using a Newmark method,and the mapping relationship of these dimensionless root mean square errors to dynamic accuracy is further studied.The research work provides a theoretical basis for the design of the parameter size of the prototype.