The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In...The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.展开更多
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co...The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d...An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.展开更多
A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on mot...A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.展开更多
Background Synthesizing dance motions to match musical inputs is a significant challenge in animation research.Compared to functional human motions,such as locomotion,dance motions are creative and artistic,often infl...Background Synthesizing dance motions to match musical inputs is a significant challenge in animation research.Compared to functional human motions,such as locomotion,dance motions are creative and artistic,often influenced by music,and can be independent body language expressions.Dance choreography requires motion content to follow a general dance genre,whereas dance performances under musical influence are infused with diverse impromptu motion styles.Considering the high expressiveness and variations in space and time,providing accessible and effective user control for tuning dance motion styles remains an open problem.Methods In this study,we present a hierarchical framework that decouples the dance synthesis task into independent modules.We use a high-level choreography module built as a Transformer-based sequence model to predict the long-term structure of a dance genre and a low-level realization module that implements dance stylization and synchronization to match the musical input or user preferences.This novel framework allows the individual modules to be trained separately.Because of the decoupling,dance composition can fully utilize existing high-quality dance datasets that do not have musical accompaniments,and the dance implementation can conveniently incorporate user controls and edit motions through a decoder network.Each module is replaceable at runtime,which adds flexibility to the synthesis of dance sequences.Results Synthesized results demonstrate that our framework generates high-quality diverse dance motions that are well adapted to varying musical conditions and user controls.展开更多
A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the...A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the cutting process,synchronous motion accuracy is the key index of the MMS.This paper proposed a novel method for measuring and estimating the synchronous motion accuracy of the dual five-axis machine tools.The method simultaneously detects errors in the tool center point(TCP)and tool axis direction(TAD)during synchronous motion.To implement the suggested method,a measurement device,with five high-precision displacement sensors was developed.A kinematic model was then developed to estimate the synchronous motion accuracy from the displacement sensor output.The screw theory was used to obtain the analytical expression of the inverse kinematic model,and the synchronous motion error was compensated and adjusted based on the inverse kinematic model of the dual five-axis machine tools.TCP and TAD quasi-static errors,such as geometric and backlash errors,were first compensated.By adjusting the servo parameters,the dynamic TCP and TAD errors,such as gain mismatch and reversal spike,were also reduced.The proposed method and device were tested in a large MMS,and the measured quasi-static and dynamic errors were all reduced when the compensation and adjustment method was used.Monte Carlo simulations were also used to estimate the uncertainty of the proposed scheme.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51075168)National Basic Research Program of China (973 Program, Grant No. 2011CB706803)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z149)
文摘The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system.
基金supported by the Science Foundation of the Education Office of Gansu Province of Chinaunder Grant No.0914-01
文摘The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.
基金supported by the Key Project of Science and Technology Research of Ministry of Educationof China (No. 108037)the National Natural Science Foundation of China (No. 10402008 and50535010)
文摘An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA040203 )the National Natural Science Foundation of China (No. 60775062)the Program for New Century Excellent Talents in University (No. NCET-07-0538).
文摘A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.
基金Supported by Startup Fund 20019495,McMaster University。
文摘Background Synthesizing dance motions to match musical inputs is a significant challenge in animation research.Compared to functional human motions,such as locomotion,dance motions are creative and artistic,often influenced by music,and can be independent body language expressions.Dance choreography requires motion content to follow a general dance genre,whereas dance performances under musical influence are infused with diverse impromptu motion styles.Considering the high expressiveness and variations in space and time,providing accessible and effective user control for tuning dance motion styles remains an open problem.Methods In this study,we present a hierarchical framework that decouples the dance synthesis task into independent modules.We use a high-level choreography module built as a Transformer-based sequence model to predict the long-term structure of a dance genre and a low-level realization module that implements dance stylization and synchronization to match the musical input or user preferences.This novel framework allows the individual modules to be trained separately.Because of the decoupling,dance composition can fully utilize existing high-quality dance datasets that do not have musical accompaniments,and the dance implementation can conveniently incorporate user controls and edit motions through a decoder network.Each module is replaceable at runtime,which adds flexibility to the synthesis of dance sequences.Results Synthesized results demonstrate that our framework generates high-quality diverse dance motions that are well adapted to varying musical conditions and user controls.
基金supported by the National Natural Science Foundation of China(Grant No.51875357)the State Key Program of National Natural Science Foundation of China(Grant No.U21B2081)the National Defense Science and Technology Excellence Youth Foundation(Grant No.2020-JCJQ-ZQ-079)。
文摘A mirror milling system(MMS)comprises two face-to-face five-axis machine tools,one for the cutting spindle and the other for the support tool.Since it is essential to maintain the cutter and support coaxial during the cutting process,synchronous motion accuracy is the key index of the MMS.This paper proposed a novel method for measuring and estimating the synchronous motion accuracy of the dual five-axis machine tools.The method simultaneously detects errors in the tool center point(TCP)and tool axis direction(TAD)during synchronous motion.To implement the suggested method,a measurement device,with five high-precision displacement sensors was developed.A kinematic model was then developed to estimate the synchronous motion accuracy from the displacement sensor output.The screw theory was used to obtain the analytical expression of the inverse kinematic model,and the synchronous motion error was compensated and adjusted based on the inverse kinematic model of the dual five-axis machine tools.TCP and TAD quasi-static errors,such as geometric and backlash errors,were first compensated.By adjusting the servo parameters,the dynamic TCP and TAD errors,such as gain mismatch and reversal spike,were also reduced.The proposed method and device were tested in a large MMS,and the measured quasi-static and dynamic errors were all reduced when the compensation and adjustment method was used.Monte Carlo simulations were also used to estimate the uncertainty of the proposed scheme.