In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow sta...In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events...Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.展开更多
In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded ...In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].展开更多
The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulatio...The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.展开更多
This paper presents an Expanding Annular Domain(EAD)algorithm combined with Sum of Squares(SOS)programming to estimate and maximize the domain of attraction(DA)of power systems.The proposed algorithm can systematicall...This paper presents an Expanding Annular Domain(EAD)algorithm combined with Sum of Squares(SOS)programming to estimate and maximize the domain of attraction(DA)of power systems.The proposed algorithm can systematically construct polynomial Lyapunov functions for power systems with transfer conductance and reliably determine a less conservative approximated DA,which are quite difficult to achieve with traditional methods.With linear SOS programming,we begin from an initial estimated DA,then enlarge it by iteratively determining a series of so-called annular domains of attraction,each of which is characterized by level sets of two successively obtained Lyapunov functions.Moreover,the EAD algorithm is theoretically analyzed in detail and its validity and convergence are shown under certain conditions.In the end,our method is tested on two classical power system cases and is demonstrated to be superior to existing methods in terms of computational speed and conservativeness of results.展开更多
The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed...The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed to obtain the estimation of the domain of attraction of the closed-loop system. A family of linear matrix inequalities (LMIs) that provides sufficient conditions for the existence of this type of Lyapunov function are presented. The results obtained in this paper can reduce the conservativeness compared with the existing ones. Numerical examples are given to illustrate the effectiveness of the proposed results.展开更多
Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation ...Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.展开更多
The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability o...The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.展开更多
For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The...For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.展开更多
This paper presents an improved method for H-two control with regional stability constraints for the closedloop system. The controller is given by the convex combination of a set of fixed gains. Both continuous and di...This paper presents an improved method for H-two control with regional stability constraints for the closedloop system. The controller is given by the convex combination of a set of fixed gains. Both continuous and discrete-time systems in a known polytopic domain are investigated. New LMI-based sufficient conditions for the existence of parameterdependent Lyapunov functions are proposed. Numerical examples are given to show the proposed conditions provide useful and less conservative results for the problems of H-two control with regional stability constraints.展开更多
The effect of two fixed vertical boundaries, a finite distance apart, on the dynamics of a column of buoyant fluid rising in a less buoyant fluid is investigated in the presence of vertical rotation. It is shown that ...The effect of two fixed vertical boundaries, a finite distance apart, on the dynamics of a column of buoyant fluid rising in a less buoyant fluid is investigated in the presence of vertical rotation. It is shown that the presence of the boundaries introduces two main effects on a rotating plume. They tend to stabilise the plume but succeed only reducing the value of the growth rate and the plume remains unstable for all finite values of the distance between the boundaries and the plume. In the absence of the sidewalls, two modes of the instability were found known as the sinuous mode and the varicose mode. The influence of the boundaries is such that it reduces the growth rate of the varicose mode more than that of the sinuous mode and consequently the modified sinuous mode is always preferred in the presence of the boundaries.展开更多
The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distanc...The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distance apart. The problem is governed by four dimensionless parameters: The Grashoff number, R, which is a measure of the difference in concentration of light material of the plume to its surrounding fluid, the Prandtl number, σ, which is the ratio of viscosity, ν, to thermal diffusivity, κ, the thickness of the plume, 2x0, and the distance, d, between the two vertical walls relative to the salt-finger length scale. The influence of the boundary on the fluxes of material, heat, and buoyancy is examined to find that the buoyancy flux possesses a local maximum for moderate to small thicknesses of the plume when they lie close to the wall. This has the effect of introducing a region of instability for thin plumes near the wall with an asymptotically larger growth rate. In addition, the presence of the boundary suppresses the three-dimensional instabilities present in the unbounded domain and allows only two-dimensional instabilities for moderate to small distances between the bounding walls.展开更多
Robust stability for a class of sampled-data systems whose underlying continuous-time systems were subjected to additive structured perturbations was considered. The proposed upper bounds of the induced perturbations ...Robust stability for a class of sampled-data systems whose underlying continuous-time systems were subjected to additive structured perturbations was considered. The proposed upper bounds of the induced perturbations in discrete-time model were similar to those obtained in reference. A stable digital optimal state feedback controller whose design was based on the solution of Riccati equation was given. By considering stability based on the second method of Lyapunov, the robust stability bounds for discrete-time model was obtained. Combining the above findings, one sufficient condition of robust stability and a new region of robust stability on the underlying continuous-time system were obtained. Example was given to illustrate the proposed results. It was shown that the sampling period was a crucial design parameter.展开更多
The P22 phage system is an intensely studied model system. Studies have ranged from biochemical analysis of basic life processes to the use of this phage for phage therapy. The phage tailspike protein (TSP) has itself...The P22 phage system is an intensely studied model system. Studies have ranged from biochemical analysis of basic life processes to the use of this phage for phage therapy. The phage tailspike protein (TSP) has itself been the subject of intensive studies over the past fifty years. The P22 TSP is essential for initiation of the infection process and instrumental as the last protein assembled onto the phage particle structure to complete its assembly. It has also been the subject for many structural studies including cryoelectron microscopic analysis and photophysical studies. It has been a model for in vivo and in vitro protein folding including analysis using P22 TSP temperature-sensitive for folding mutations (tsf). Recently the structure and function of the N-terminal domain (NTD), including some aspects of the structural stability of the P22 TSP NTD (aa1-aa108), are being genetically dissected. This report strongly supports the notion that two amino acids, not localized to the internal NTD dome stem, are important in the structural stability of the P22 TSP NTD.展开更多
Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is s...Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.展开更多
In this paper, the author studies the stability of the solution to a three-dimension-al gonorrhea discrete mathematical model by Liapunoy method. The parameter es-timator of the slability domain is obtained and the ra...In this paper, the author studies the stability of the solution to a three-dimension-al gonorrhea discrete mathematical model by Liapunoy method. The parameter es-timator of the slability domain is obtained and the rationality of the model is ex-plained in a theoretic way.展开更多
In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is i...In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.展开更多
In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived a...In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.展开更多
In this paper, transient stability analysis was focused on Hu-Liao HVDC and AC parallel transmission system. The Hu-Liao HVDC project was introduced;Simulation method and mathematic models of AC and DC systems were st...In this paper, transient stability analysis was focused on Hu-Liao HVDC and AC parallel transmission system. The Hu-Liao HVDC project was introduced;Simulation method and mathematic models of AC and DC systems were stu-died as well as corresponding regulators and controllers. The dynamic performance and the interaction between AC and DC systems during serious disturbance were researched by detail time-domain simulation. Comparison was also made under different operation schemes. The research will bring important and significant reference for further operation and stability control of Hu-Liao HVDC and AC system.展开更多
文摘In Fused Filament Fabrication(FFF),the state of material flow significantly influences printing outcomes.However,online monitoring of these micro-physical processes within the extruder remains challenging.The flow state is affected by multiple parameters,with temperature and volumetric flow rate(VFR)being the most critical.The study explores the stable extrusion of flow with a highly sensitive acoustic emission(AE)sensor so that AE signals generated by the friction in the annular region can reflect the flow state more effectively.Nevertheless,the large volume and broad frequency range of the data present processing challenges.This study proposes a method that initially selects short impact signals and then uses the Fast Kurtogram(FK)to identify the frequency with the highest kurtosis for signal filtration.The results indicate that this approach significantly enhances processing speed and improves feature extraction capabilities.By correlating AE characteristics under various parameters with the quality of extruded raster beads,AE can monitor the real-time state of material flow.This study offers a concise and efficient method for monitoring the state of raster beads and demonstrates the potential of online monitoring of the flow states.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金supported by the Hong Kong Research Grants Council (GRF619511)the National Natural Science Foundation of China (11128204)
文摘Under isothermal quasi-static stretching the phase transition of a superelastic NiTi tube involves the formation (during loading) and vanishing (in unloading) of a high strain (martensite) domain. The two events are accompanied by a rapid stress drop/rise due to the formation/vanishing of do- main fronts. From a thermodynamic point of view, both are instability phenomena that occur once the system reaches its critical state. This paper investigates the stability of a shrink- ing cylindrical domain in a tube configuration during unload- ing. The energetics and thermodynamic driving force of the cylindrical domain are quantified by using an elastic inclu- sion model. It is demonstrated that the two domain fronts ex- hibit strong interaction when they come close to each other, which brings a peak in the total energy and a sign change in the thermodynamic driving force. It is proved that such domain front interaction plays an important role in control- ling the stability of the domain and in the occurrence of stress jumps during domain vanishing. It is also shown that the pro- cess is governed by two nondimensional length scales (the normalized tube length and normalized wall-thickness) and that the length scale dependence of the critical domain length and stress jump for the domain vanishing can be quantified by the elastic inclusion model.
基金financially supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.02-2021.04financially supported by Vietnam Ministry of Education and Training under Project B2022-BKA-06.
文摘In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].
文摘The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No.U1866210Young Elite Scientists Sponsorship Program by CSEE under Grant No.CSEE-YESS-2018007.
文摘This paper presents an Expanding Annular Domain(EAD)algorithm combined with Sum of Squares(SOS)programming to estimate and maximize the domain of attraction(DA)of power systems.The proposed algorithm can systematically construct polynomial Lyapunov functions for power systems with transfer conductance and reliably determine a less conservative approximated DA,which are quite difficult to achieve with traditional methods.With linear SOS programming,we begin from an initial estimated DA,then enlarge it by iteratively determining a series of so-called annular domains of attraction,each of which is characterized by level sets of two successively obtained Lyapunov functions.Moreover,the EAD algorithm is theoretically analyzed in detail and its validity and convergence are shown under certain conditions.In the end,our method is tested on two classical power system cases and is demonstrated to be superior to existing methods in terms of computational speed and conservativeness of results.
基金supported by the National Creative Research Groups Science Foundation of China (No.60721062)the National High Technology Research and Development Program of China (863 Program) (No.2006AA04 Z182)National Natural Science Foundation of China (No.60736021)
文摘The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed to obtain the estimation of the domain of attraction of the closed-loop system. A family of linear matrix inequalities (LMIs) that provides sufficient conditions for the existence of this type of Lyapunov function are presented. The results obtained in this paper can reduce the conservativeness compared with the existing ones. Numerical examples are given to illustrate the effectiveness of the proposed results.
基金supported by National Natural Science Foundation of China(Grant Nos.51075259,51121063,51305256)National Basic Research Program of China(973 Program,Grant No.2006CB705400)
文摘Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509124 and 51681340360)the Hi-Tech Ship Project of the Ministry of Industry and Technology(Grant No.2016[26])
文摘The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.
文摘For input saturated Hammerstein systems, the two-step predictive control strategy is adopted. The first step calculates the desired intermediate variable applying unconstrained linear modal and predictive control. The second step obtains the real-time control action by solving algebraic equation and desaturation. The case of immeasurable state is considered where the observer gain matrix is solved by Sylvester equation. The sufficient closed-loop stability condition is given and the designing and tuning algorithm for the domain of attraction is proposed. The theoretical results are validated by an example.
基金This work was supported by the Science Foundation of Education Commission of Hubei Province(No.D200613002)the Doctoral Pre-ResearchFoundation of Three Gorges University.
文摘This paper presents an improved method for H-two control with regional stability constraints for the closedloop system. The controller is given by the convex combination of a set of fixed gains. Both continuous and discrete-time systems in a known polytopic domain are investigated. New LMI-based sufficient conditions for the existence of parameterdependent Lyapunov functions are proposed. Numerical examples are given to show the proposed conditions provide useful and less conservative results for the problems of H-two control with regional stability constraints.
文摘The effect of two fixed vertical boundaries, a finite distance apart, on the dynamics of a column of buoyant fluid rising in a less buoyant fluid is investigated in the presence of vertical rotation. It is shown that the presence of the boundaries introduces two main effects on a rotating plume. They tend to stabilise the plume but succeed only reducing the value of the growth rate and the plume remains unstable for all finite values of the distance between the boundaries and the plume. In the absence of the sidewalls, two modes of the instability were found known as the sinuous mode and the varicose mode. The influence of the boundaries is such that it reduces the growth rate of the varicose mode more than that of the sinuous mode and consequently the modified sinuous mode is always preferred in the presence of the boundaries.
文摘The influence of boundaries on the dynamics of a compositional plume is studied using a simple model in which a column of buoyant fluid rises in a less buoyant fluid bounded by two vertical walls with a finite distance apart. The problem is governed by four dimensionless parameters: The Grashoff number, R, which is a measure of the difference in concentration of light material of the plume to its surrounding fluid, the Prandtl number, σ, which is the ratio of viscosity, ν, to thermal diffusivity, κ, the thickness of the plume, 2x0, and the distance, d, between the two vertical walls relative to the salt-finger length scale. The influence of the boundary on the fluxes of material, heat, and buoyancy is examined to find that the buoyancy flux possesses a local maximum for moderate to small thicknesses of the plume when they lie close to the wall. This has the effect of introducing a region of instability for thin plumes near the wall with an asymptotically larger growth rate. In addition, the presence of the boundary suppresses the three-dimensional instabilities present in the unbounded domain and allows only two-dimensional instabilities for moderate to small distances between the bounding walls.
基金Sponsored by the Special Research Foundation for the Doctor's Speciality of University(Grant No.20060214004) and the Key Scientific Research Founda-tion of Education Ministry(Grant No.206041) and the Key Scientific Research Foundation of Harbin Science Bureau(Grant No.2005AA1CG037).
文摘Robust stability for a class of sampled-data systems whose underlying continuous-time systems were subjected to additive structured perturbations was considered. The proposed upper bounds of the induced perturbations in discrete-time model were similar to those obtained in reference. A stable digital optimal state feedback controller whose design was based on the solution of Riccati equation was given. By considering stability based on the second method of Lyapunov, the robust stability bounds for discrete-time model was obtained. Combining the above findings, one sufficient condition of robust stability and a new region of robust stability on the underlying continuous-time system were obtained. Example was given to illustrate the proposed results. It was shown that the sampling period was a crucial design parameter.
文摘The P22 phage system is an intensely studied model system. Studies have ranged from biochemical analysis of basic life processes to the use of this phage for phage therapy. The phage tailspike protein (TSP) has itself been the subject of intensive studies over the past fifty years. The P22 TSP is essential for initiation of the infection process and instrumental as the last protein assembled onto the phage particle structure to complete its assembly. It has also been the subject for many structural studies including cryoelectron microscopic analysis and photophysical studies. It has been a model for in vivo and in vitro protein folding including analysis using P22 TSP temperature-sensitive for folding mutations (tsf). Recently the structure and function of the N-terminal domain (NTD), including some aspects of the structural stability of the P22 TSP NTD (aa1-aa108), are being genetically dissected. This report strongly supports the notion that two amino acids, not localized to the internal NTD dome stem, are important in the structural stability of the P22 TSP NTD.
基金National Natural Science Foundation of China under Grant Nos.52108458 and U1839201China National Postdoctoral Program of Innovative Talents under Grant No.BX20200192+1 种基金Shuimu Tsinghua Scholar Program under Grant No.2020SM005National Key Research and Development Program of China under Grant No.2018YFC1504305。
文摘Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems.When explicit time-domain integration algorithms are used,the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary.The lack of a clear and practical stability criterion for this problem,however,affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries.In this study,we investigate the stability conditions of explicit integration algorithms when using three-dimensional(3D)viscoelastic artificial boundaries through an analysis method based on a local subsystem.Several boundary subsystems that can represent localized characteristics of a complete numerical model are established,and their analytical stability conditions are derived from and further compared to one another.The stability of the complete model is controlled by the corner regions,and thus,the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained.Next,by analyzing the impact of different factors on stability conditions,we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.
文摘In this paper, the author studies the stability of the solution to a three-dimension-al gonorrhea discrete mathematical model by Liapunoy method. The parameter es-timator of the slability domain is obtained and the rationality of the model is ex-plained in a theoretic way.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20010614003)
文摘In order to eliminate Courant-Friedrich-Levy(CFL) condition restraint and improvecomputational efficiency,a new finite-difference time-domain(FDTD)method based on the alternating-direction implicit(ADI) technique is introduced recently.In this paper,a theoretical proof of the stabilityof the three-dimensional(3-D)ADI-FDTD method is presented.It is shown that the 3-D ADI-FDTDmethod is unconditionally stable and free from the CFL condition restraint.
基金Supported by National Natural Science Foundation of China(No.61204028)
文摘In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.
文摘In this paper, transient stability analysis was focused on Hu-Liao HVDC and AC parallel transmission system. The Hu-Liao HVDC project was introduced;Simulation method and mathematic models of AC and DC systems were stu-died as well as corresponding regulators and controllers. The dynamic performance and the interaction between AC and DC systems during serious disturbance were researched by detail time-domain simulation. Comparison was also made under different operation schemes. The research will bring important and significant reference for further operation and stability control of Hu-Liao HVDC and AC system.