Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framewor...Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framework has been recognized as an effective way to achieve dynamic spectrum access.From the perspective of spectrum auction,multi-band multi-user auction provides a new challenge for spectrum management.This paper proposes an auction framework based on location information for multi-band multi-user spectrum allocation.The performance of the proposed framework is compared with that of traditional auction framework based on a binary interference model as a benchmark.Simulation results show that primary users will obtain more total system revenue by selling their idle frequency bands to secondary users and the spectrum utilization of the proposed framework is more effective and fairer.展开更多
In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated ...In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated Raman scattering.The fiber laser is pumped forward,and the fiber ring cavity contains double-cladding Yb-doped fiber,output coupler,polarization controller,polarization independent isolator and other elements.NOLM is connected with the ring cavity by through a 3dB beam splitter and 25m single-mode fiber.The total length of the eight-shape cavity laser is about 60meters.By adjusting the intra-cavity polarization controller,a stable dissipative soliton resonance mode-locked spike pulse can be achieved.The repetition frequency of the pulse train is 3.44MHz,which is consistent with the cavity length.The 3dB bandwidth of the spectrum reaches 70.6nm,and the 10dB bandwidth is close to 147.11nm.In this experiment,dissipative soliton resonance mode-locked pulses with wide spectrum and high pulse energy are realized by a traditional modelocking method,which has wide application in many fields such as laser spectral detection and terahertz wave generation.展开更多
In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band s...In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.展开更多
Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D pla...Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D plasmonic W_(18)O_(49)nanowires onto 2D g‐C_(3)N_(4)nanosheets.W_(18)O_(49)nanowiresplay the dual role of a light absorption antenna—that extends light adsorption—and a hot electrondonor—that assists the water reduction reaction in a wider light spectrum range.Moreover,S‐scheme charge transfer resulting from the matching bandgaps of W_(18)O_(49)and g‐C_(3)N_(4)can lead tostrong redox capability and high migration speed of the photoinduced charges.Consequently,in thisstudy,W_(18)O_(49)/g‐C_(3)N_(4)hybrids exhibited higher photocatalytic H2 generation than that of pristineg‐C_(3)N_(4)under light irradiation of 420–550 nm.Furthermore,the H2 production rate of thebest‐performing W_(18)O_(49)/g‐C_(3)N_(4)hybrid was 41.5μmol·g^(−1)·h^(−1)upon exposure to monochromaticlight at 550 nm,whereas pure g‐C_(3)N_(4)showed negligible activity.This study promotes novel andenvironmentally friendly hot‐electron‐assisted S‐scheme photocatalysts for the broad‐spectrumutilization of solar light.展开更多
In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when...In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).展开更多
We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in t...We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges.展开更多
Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature rang...Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature range.However,it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature.Here,we propose a flexible regulation engineering of titanium nitride(TiN)nanofibrous membranes(NMs,TNMs),which could be distributed uniformly in the polydimethylsiloxane(PDMS)matrix and contributed to the formation of abundant local conductive networks,generating the local conductive loss and enhancing the loss ability of EMWs.Moreover,when the TNMs are used as functional units and dispersed in the matrix,the corresponding composites exhibit an outstanding anti-reflection effect on microwaves.As hoped,under the precondition of good impedance matching,local conductive loss and polarization loss together improve the loss capacity at room temperature,and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature.Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering,the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K.This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection,but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.展开更多
光轴一致性是衡量多传感器光电系统工作性能的重要指标,为了解决多传感器轴一致性检测系统工作波段范围较窄、系统灵活性较低的问题,本文结合光路切换和光热转换的思想,设计了一套宽光谱多传感器轴一致性检测系统。该系统采用卡塞格林...光轴一致性是衡量多传感器光电系统工作性能的重要指标,为了解决多传感器轴一致性检测系统工作波段范围较窄、系统灵活性较低的问题,本文结合光路切换和光热转换的思想,设计了一套宽光谱多传感器轴一致性检测系统。该系统采用卡塞格林反射式光学系统作为从可见光到长波红外范围内的接收和发射系统;通过步进电机的驱动,带动导轨上方反光镜位置移动,实现系统光路的切换;采用镀有硫化铜的锗玻璃,作为光热转换靶材,将短波长的光斑转换为热斑,采用长波红外探测器实现对各波段激光光斑图像采集。系统能够实现0.4~14μm波段光谱范围的检测;对光学系统进行像质评价分析,可以得到系统在不同波段下由像差引起的弥散斑(Root mean square,RMS)直径均在9μm以下,能量集中度较好;对系统检测精度进行分析,最大测量误差为0.1 mrad;通过导轨往返运动重复精度实验和系统测量准确度实验,对系统可靠性进行验证,结果表明检测系统满足仪表准确度1.5级的要求。该检测系统结构紧凑,适用波谱范围广,能够实现对多传感器光电设备的轴一致性检测。展开更多
基金supported by the Beijing Natural Science Foundation of China (4102050)
文摘Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framework has been recognized as an effective way to achieve dynamic spectrum access.From the perspective of spectrum auction,multi-band multi-user auction provides a new challenge for spectrum management.This paper proposes an auction framework based on location information for multi-band multi-user spectrum allocation.The performance of the proposed framework is compared with that of traditional auction framework based on a binary interference model as a benchmark.Simulation results show that primary users will obtain more total system revenue by selling their idle frequency bands to secondary users and the spectrum utilization of the proposed framework is more effective and fairer.
基金This work is supported by the Natural Science Foundation of Shandong Province(ZR2017MF072)and HIT Graduate Teaching Innovation Project(JGYJ-2019039).
文摘In this paper,a mode-locked Ytterbiumdoped fiber laser based on nonlinear optical loop mirror(NOLM)is proposed.The laser generates a wide-spectrum dissipative soliton resonance modelocked pulse with strong stimulated Raman scattering.The fiber laser is pumped forward,and the fiber ring cavity contains double-cladding Yb-doped fiber,output coupler,polarization controller,polarization independent isolator and other elements.NOLM is connected with the ring cavity by through a 3dB beam splitter and 25m single-mode fiber.The total length of the eight-shape cavity laser is about 60meters.By adjusting the intra-cavity polarization controller,a stable dissipative soliton resonance mode-locked spike pulse can be achieved.The repetition frequency of the pulse train is 3.44MHz,which is consistent with the cavity length.The 3dB bandwidth of the spectrum reaches 70.6nm,and the 10dB bandwidth is close to 147.11nm.In this experiment,dissipative soliton resonance mode-locked pulses with wide spectrum and high pulse energy are realized by a traditional modelocking method,which has wide application in many fields such as laser spectral detection and terahertz wave generation.
文摘In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.
文摘Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D plasmonic W_(18)O_(49)nanowires onto 2D g‐C_(3)N_(4)nanosheets.W_(18)O_(49)nanowiresplay the dual role of a light absorption antenna—that extends light adsorption—and a hot electrondonor—that assists the water reduction reaction in a wider light spectrum range.Moreover,S‐scheme charge transfer resulting from the matching bandgaps of W_(18)O_(49)and g‐C_(3)N_(4)can lead tostrong redox capability and high migration speed of the photoinduced charges.Consequently,in thisstudy,W_(18)O_(49)/g‐C_(3)N_(4)hybrids exhibited higher photocatalytic H2 generation than that of pristineg‐C_(3)N_(4)under light irradiation of 420–550 nm.Furthermore,the H2 production rate of thebest‐performing W_(18)O_(49)/g‐C_(3)N_(4)hybrid was 41.5μmol·g^(−1)·h^(−1)upon exposure to monochromaticlight at 550 nm,whereas pure g‐C_(3)N_(4)showed negligible activity.This study promotes novel andenvironmentally friendly hot‐electron‐assisted S‐scheme photocatalysts for the broad‐spectrumutilization of solar light.
文摘In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).
文摘We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges.
基金support of the National Natural Science Foundation of China(Nos.22305066 and U1704253).
文摘Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption(EMWA)performances over wide temperature range.However,it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature.Here,we propose a flexible regulation engineering of titanium nitride(TiN)nanofibrous membranes(NMs,TNMs),which could be distributed uniformly in the polydimethylsiloxane(PDMS)matrix and contributed to the formation of abundant local conductive networks,generating the local conductive loss and enhancing the loss ability of EMWs.Moreover,when the TNMs are used as functional units and dispersed in the matrix,the corresponding composites exhibit an outstanding anti-reflection effect on microwaves.As hoped,under the precondition of good impedance matching,local conductive loss and polarization loss together improve the loss capacity at room temperature,and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature.Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering,the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K.This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection,but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.
文摘光轴一致性是衡量多传感器光电系统工作性能的重要指标,为了解决多传感器轴一致性检测系统工作波段范围较窄、系统灵活性较低的问题,本文结合光路切换和光热转换的思想,设计了一套宽光谱多传感器轴一致性检测系统。该系统采用卡塞格林反射式光学系统作为从可见光到长波红外范围内的接收和发射系统;通过步进电机的驱动,带动导轨上方反光镜位置移动,实现系统光路的切换;采用镀有硫化铜的锗玻璃,作为光热转换靶材,将短波长的光斑转换为热斑,采用长波红外探测器实现对各波段激光光斑图像采集。系统能够实现0.4~14μm波段光谱范围的检测;对光学系统进行像质评价分析,可以得到系统在不同波段下由像差引起的弥散斑(Root mean square,RMS)直径均在9μm以下,能量集中度较好;对系统检测精度进行分析,最大测量误差为0.1 mrad;通过导轨往返运动重复精度实验和系统测量准确度实验,对系统可靠性进行验证,结果表明检测系统满足仪表准确度1.5级的要求。该检测系统结构紧凑,适用波谱范围广,能够实现对多传感器光电设备的轴一致性检测。