期刊文献+
共找到336篇文章
< 1 2 17 >
每页显示 20 50 100
Improvement of Binocular Reconstruction Algorithm for Measuring 3D Pavement Texture Using a Single Laser Line Scanning Constraint 被引量:1
1
作者 Yuanyuan Wang RuiWang +1 位作者 Xiaofeng Ren Junan Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1951-1972,共22页
The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was... The dense and accurate measurement of 3D texture is helpful in evaluating the pavement function.To form dense mandatory constraints and improve matching accuracy,the traditional binocular reconstruction technology was improved threefold.First,a single moving laser line was introduced to carry out global scanning constraints on the target,which would well overcome the difficulty of installing and recognizing excessive laser lines.Second,four kinds of improved algorithms,namely,disparity replacement,superposition synthesis,subregion segmentation,and subregion segmentation centroid enhancement,were established based on different constraint mechanism.Last,the improved binocular reconstruction test device was developed to realize the dual functions of 3D texture measurement and precision self-evaluation.Results show that compared with traditional algorithms,the introduction of a single laser line scanning constraint is helpful in improving the measurement’s accuracy.Among various improved algorithms,the improvement effect of the subregion segmentation centroid enhancement method is the best.It has a good effect on both overall measurement and single pointmeasurement,which can be considered to be used in pavement function evaluation. 展开更多
关键词 3d pavement texture binocular reconstruction algorithm single laser line scanning constraint improved stereo matching
下载PDF
Research on 3D Laser Scanning Reconstruction of Ancient Buildings Combined with BIM Technology
2
作者 Ensheng Liu Chunyong Luo +1 位作者 Chunbaixue Yang Yuhua Huang 《Journal of Computer and Communications》 2023年第7期233-240,共8页
After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting anci... After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. . 展开更多
关键词 Liu Ancestral Hall 3d Laser scanning Technology BIM Technology Point Cloud Processing
下载PDF
Algorithm and System of Scanning Color 3D Objects 被引量:1
3
作者 许智钦 孙长库 郑义忠 《Transactions of Tianjin University》 EI CAS 2002年第2期134-138,共5页
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ... This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification. 展开更多
关键词 d measurement color 3d object laser scanning surface construction
下载PDF
Acoustical properties of a 3D printed honeycomb structure filled with nanofillers:Experimental analysis and optimization for emerging applications
4
作者 Jeyanthi Subramanian Vinoth kumar Selvaraj +3 位作者 Rohan Singh Ilangovan S Naresh Kakur Ruban Whenish 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期248-258,共11页
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ... The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance. 展开更多
关键词 3d printing Honeycomb structure ACOUSTICS Field emission scanning electron microscope Response surface methodology
下载PDF
Structural plane recognition from three-dimensional laser scanning points using an improved region-growing algorithm based on the robust randomized Hough transform 被引量:1
5
作者 XU Zhi-hua GUO Ge +3 位作者 SUN Qian-cheng WANG Quan ZHANG Guo-dong YE Run-qing 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3376-3391,共16页
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ... The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice. 展开更多
关键词 3d laser scanning Rock discontinuity structural plane Intelligent recognition Robust randomized Hough transform Improved region growing algorithm
下载PDF
Application of 3D Scanned Big Data of Large-scale Cultural Heritage Objects Based on Noise-robust Transparent Visualization
6
作者 Tanaka Satoshi 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1635-1650,共16页
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con... Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site). 展开更多
关键词 3d scanning point cloud transparent visualization noise transparentization cultural heritage object
下载PDF
Monitoring slope deformation using a 3-D laser image scanning system: a case study 被引量:10
7
作者 YUE Depeng WANG Jiping +2 位作者 ZHOU Jinxing CHEN Xiaoxue REN Huijun 《Mining Science and Technology》 EI CAS 2010年第6期898-903,共6页
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce... An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately. 展开更多
关键词 3-d laser image scanning system ILRIS-36d -distortion SLOPE MONITOR
下载PDF
Experimental Research on Effects of Process Parameters on Servo Scanning 3D Micro Electrical Discharge Machining 被引量:3
8
作者 TONG Hao LI Yong HU Manhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期114-121,共8页
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a... Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM. 展开更多
关键词 micro electrical discharge machining(micro EdM) servo scanning machining 3d micro-structure process parameter
下载PDF
Large-scale deformation monitoring in mining area by D-InSAR and 3D laser scanning technology integration 被引量:13
9
作者 Chen Bingqian Deng Kazhong +1 位作者 Fan Hongdong Hao Ming 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期545-551,共7页
Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D ... Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area. 展开更多
关键词 d-InSAR 3d laser scanning Inverse distance weighting Subsidence monitoring TerraSAR-X
下载PDF
3D cavity detection technique and its application based on cavity auto scanning laser system 被引量:3
10
作者 刘希灵 李夕兵 +2 位作者 李发本 赵国彦 秦豫辉 《Journal of Central South University of Technology》 EI 2008年第2期285-288,共4页
Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th... Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones. 展开更多
关键词 cavity detection 3d laser detection cavity auto scanning laser system
下载PDF
Camera Calibration for 3D Color Scanning System Using Virtual 3D Model 被引量:1
11
作者 SUN Xian-bin LI De-hua +1 位作者 YIN Jie YAO Xun 《Computer Aided Drafting,Design and Manufacturing》 2007年第2期77-81,共5页
Instead of traditionally using a 3D physical model with many control points on it, a calibration plate with printed chess grid and movable along its normal direction is implemented to provide large area 3D control poi... Instead of traditionally using a 3D physical model with many control points on it, a calibration plate with printed chess grid and movable along its normal direction is implemented to provide large area 3D control points with variable Z values. Experiments show that the approach presented is effective for reconstructing 3D color objects in computer vision system. 展开更多
关键词 computer vision 3d scan camera calibration calibration plate
下载PDF
Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology
12
作者 YAN Ping WANG Xiaoxu +2 位作者 ZHENG Shucheng WANG Yong LI Xiaomei 《Journal of Arid Land》 SCIE CSCD 2022年第9期1009-1021,共13页
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Auton... The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring. 展开更多
关键词 3d laser scanning technology wind erosion wind tunnel test wind erosion depth MICROTOPOGRAPHY soil hardness
下载PDF
Development of 3D Scanning System for Robotic Plasma Processing of Medical Products with Complex Geometries
13
作者 Darya L.Alontseva Elaheh Ghassemieh +1 位作者 Alexander L.Krasavin Albina T.Kadyroldina 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第3期212-222,共11页
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap... This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine. 展开更多
关键词 Plasma processing point cloud robot manipulator surface segmentation three-dimensional(3d)scanning
下载PDF
Numerical Investigation of Laser Surface Hardening of AISI 4340 Using 3D FEM Model for Thermal Analysis of Different Laser Scanning Patterns
14
作者 Baha Tarchoun Abderrazak El Ouafi Ahmed Chebak 《Modeling and Numerical Simulation of Material Science》 2020年第3期31-54,共24页
<span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the... <span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the heating system parameters and the material properties have important effects on the achieved hardened surface characteristics. The control of these variables using predictive modeling strategies leads to the desired surface properties without following the fastidious trial and error method. However, when the dimensions of the surface to be treated are larger than the cross section of the laser beam, various laser scanning patterns can be used. Due to their effects on the hardened surface properties, the attributes of the selected scanning patterns become significant variables in the process. This paper presents numerical and experimental investigations of four scanning patterns for laser surface hardening of AISI 4340 steel. The investigations are based on exhaustive modelling and simulation efforts carried out using a 3D finite element thermal analysis and structured experimental study according to Taguchi method. The temperature distribution and the hardness profile attributes are used to evaluate the effects of heating parameters and patterns design parameters on the hardened surface characteristics. This is very useful for integrating the scanning patterns</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> features in an efficient predictive modeling approach. A structured experimental design combined to improved statistical analysis tools </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> assess the 3D model performance. The experiments are performed on a 3 kW Nd:Yag laser system. The modeling results exhibit a great agreement between the predicted and measured values for the hardened surface characteristics. The model evaluation reveal</span></span></span><span><span><span>s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">also its ability to provide not only accurate and robust predictions of the temperature distribution and the hardness profile as well an in-depth analysis of the effects of the process parameters.</span></span></span> 展开更多
关键词 Laser Surface Hardening 3d Thermal Analysis Finite Element Modelling AISI 4340 Steel Laser scanning Patterns Taguchi Method ANOVA Nd:Yag Laser Source
下载PDF
The Research Application of 3D Laser Scanning Technology in the Deformation Detection of Large Cylindrical Oil Tank
15
作者 Wenxue Lv Jianzhang Li 《Journal of Architectural Research and Development》 2022年第3期14-20,共7页
In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,howeve... In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection. 展开更多
关键词 3d laser scanning technologies Large cylindrical oil tank Locally concavo convex ELLIPTICITY
下载PDF
Scan Worx人体3D测量解决方案及其应用 被引量:1
16
作者 黄丽 施亦东 陈衍夏 《皮革科学与工程》 CAS 2007年第2期56-59,共4页
介绍了来自德国Vitronic公司的3D人体测量系统ScanWorx的系统组成、测量原理和应用功能,并对目前服装企业的应用状况提出了建议。
关键词 scan Worx 3d测量 人体扫描
下载PDF
Acousto-optic scanning spatial-switching multiphoton lithography 被引量:5
17
作者 Binzhang Jiao Fayu Chen +6 位作者 Yuncheng Liu Xuhao Fan Shaoqun Zeng Qi Dong Leimin Deng Hui Gao Wei Xiong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期597-606,共10页
Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanuf... Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing. 展开更多
关键词 3d nano-printing acousto-optic scanning aberration-free wavefront spatial-switching
下载PDF
Application of Three-Dimensional Laser Scanning and Surveying in Geological Investigation of High Rock Slope 被引量:16
18
作者 黄润秋 董秀军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2008年第2期184-190,共7页
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a... The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value. 展开更多
关键词 3d laser scanning system point cloud high steep slope rock mass structure quick documentation.
下载PDF
Building 3D CityGML models of mining industrial structures using integrated UAV and TLS point clouds
19
作者 Canh Le Van Cuong Xuan Cao +2 位作者 Anh Ngoc Nguyen Chung Van Pham Long Quoc Nguyen 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期158-177,共20页
Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such a... Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such as digital twins and smart factory management.In this study,3D models of mining engineering structures were built based on the CityGML standard.For collecting spatial data,the two most popular geospatial technologies,namely UAV-SfM and TLS were employed.The accuracy of the UAV survey was at the centimeter level,and it satisfied the absolute positional accuracy requirement of creat-ing all levels of detail(LoD)according to the CityGML standard.Therefore,the UAV-SfM point cloud dataset was used to build LoD 2 models.In addition,the comparison between the UAV-SfM and TLS sub-clouds of facades and roofs indicates that the UAV-SfM and TLS point clouds of these objects are highly consistent,therefore,point clouds with a higher level of detail and accuracy provided by the integration of UAV-SfM and TLS were used to build LoD 3 models.The resulting 3D CityGML models include 39 buildings at LoD 2,and two mine shafts with hoistrooms,headframes,and sheave wheels at LoD3. 展开更多
关键词 3d modelling CityGML-Mining industry UAV Terrestrial laser scanning Point cloud
下载PDF
Surface characteristics analysis of fractures induced by supercritical CO_(2)and water through three-dimensional scanning and scanning electron micrography 被引量:6
20
作者 Hao Chen Yi Hu +4 位作者 Jiawei Liu Feng Liu Zheng Liu Yong Kang Xiaochuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1047-1058,共12页
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze... Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance. 展开更多
关键词 Supercritical carbon dioxide(SC-CO_(2))fracturing Quantitative characterization of surface features Surface roughness and fractal dimension Three-dimensional(3d)scanning scanning electron micrograph(SEM)
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部