期刊文献+
共找到10,192篇文章
< 1 2 250 >
每页显示 20 50 100
A New Encryption Mechanism Supporting the Update of Encrypted Data for Secure and Efficient Collaboration in the Cloud Environment
1
作者 Chanhyeong Cho Byeori Kim +1 位作者 Haehyun Cho Taek-Young Youn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期813-834,共22页
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud... With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks. 展开更多
关键词 cloud collaboration mode of operation data update efficiency
下载PDF
Secure approach to sharing digitized medical data in a cloud environment 被引量:1
2
作者 Kukatlapalli Pradeep Kumar Boppuru Rudra Prathap +2 位作者 Michael Moses Thiruthuvanathan Hari Murthy Vinay Jha Pillai 《Data Science and Management》 2024年第2期108-118,共11页
Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laborat... Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laboratories, pharmacies, and daily medical status reports. The electronic format of medical reports ensures that all information is available in a single place. However, it is difficult to store and manage large amounts of data. Dedicated servers and a data center are needed to store and manage patient data. However, self-managed data centers are expensive for hospitals. Storing data in a cloud is a cheaper alternative. The advantage of storing data in a cloud is that it can be retrieved anywhere and anytime using any device connected to the Internet. Therefore, doctors can easily access the medical history of a patient and diagnose diseases according to the context. It also helps prescribe the correct medicine to a patient in an appropriate way. The systematic storage of medical records could help reduce medical errors in hospitals. The challenge is to store medical records on a third-party cloud server while addressing privacy and security concerns. These servers are often semi-trusted. Thus, sensitive medical information must be protected. Open access to records and modifications performed on the information in those records may even cause patient fatalities. Patient-centric health-record security is a major concern. End-to-end file encryption before outsourcing data to a third-party cloud server ensures security. This paper presents a method that is a combination of the advanced encryption standard and the elliptical curve Diffie-Hellman method designed to increase the efficiency of medical record security for users. Comparisons of existing and proposed techniques are presented at the end of the article, with a focus on the analyzing the security approaches between the elliptic curve and secret-sharing methods. This study aims to provide a high level of security for patient health records. 展开更多
关键词 Electronic medical records cloud computing data privacy Attribute-based encryption AUTHENTICATION
下载PDF
Preserving Data Secrecy and Integrity for Cloud Storage Using Smart Contracts and Cryptographic Primitives
3
作者 Maher Alharby 《Computers, Materials & Continua》 SCIE EI 2024年第5期2449-2463,共15页
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This a... Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems. 展开更多
关键词 cloud storage data secrecy data integrity smart contracts CRYPTOGRAPHY
下载PDF
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
4
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3D point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
下载PDF
Analysis of Secured Cloud Data Storage Model for Information
5
作者 Emmanuel Nwabueze Ekwonwune Udo Chukwuebuka Chigozie +1 位作者 Duroha Austin Ekekwe Georgina Chekwube Nwankwo 《Journal of Software Engineering and Applications》 2024年第5期297-320,共24页
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac... This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system. 展开更多
关键词 cloud data Information Model data Storage cloud Computing Security System data Encryption
下载PDF
A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center
6
作者 Nidhika Chauhan Navneet Kaur +5 位作者 Kamaljit Singh Saini Sahil Verma Abdulatif Alabdulatif Ruba Abu Khurma Maribel Garcia-Arenas Pedro A.Castillo 《Computer Systems Science & Engineering》 2024年第3期571-608,共38页
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p... As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature. 展开更多
关键词 cloud computing data centre task allocation performance management resource utilization
下载PDF
Fortifying Healthcare Data Security in the Cloud:A Comprehensive Examination of the EPM-KEA Encryption Protocol
7
作者 Umi Salma Basha Shashi Kant Gupta +2 位作者 Wedad Alawad SeongKi Kim Salil Bharany 《Computers, Materials & Continua》 SCIE EI 2024年第5期3397-3416,共20页
A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is stil... A new era of data access and management has begun with the use of cloud computing in the healthcare industry.Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a majorconcern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentialityand integrity of healthcare data in the cloud. The computational overhead of encryption technologies could leadto delays in data access and processing rates. To address these challenges, we introduced the Enhanced ParallelMulti-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the securestorage of critical patient records in the cloud. The data was gathered from two categories Authorization forHospital Admission (AIH) and Authorization for High Complexity Operations.We use Z-score normalization forpreprocessing. The primary goal of implementing encryption techniques is to secure and store massive amountsof data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become morewidely available if security issues can be successfully fixed. As a result of our analysis using specific parametersincluding Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energyconsumption (53%), the system demonstrated favorable performance when compared to the traditional method.This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloudstorage solutions for safeguarding healthcare data. 展开更多
关键词 cloud computing healthcare data security enhanced parallel multi-key encryption algorithm(EPM-KEA)
下载PDF
Data-Oriented Operating System for Big Data and Cloud
8
作者 Selwyn Darryl Kessler Kok-Why Ng Su-Cheng Haw 《Intelligent Automation & Soft Computing》 2024年第4期633-647,共15页
Operating System(OS)is a critical piece of software that manages a computer’s hardware and resources,acting as the intermediary between the computer and the user.The existing OS is not designed for Big Data and Cloud... Operating System(OS)is a critical piece of software that manages a computer’s hardware and resources,acting as the intermediary between the computer and the user.The existing OS is not designed for Big Data and Cloud Computing,resulting in data processing and management inefficiency.This paper proposes a simplified and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes.The proposed algorithm utilizes the performance benefits from the improved Input/Output(I/O)performance.The performance engineering runs the data-oriented design on traditional data management to improve data processing speed by reducing memory access overheads in conventional data management.The OS incorporates a data-oriented design to“modernize”various Data Science and management aspects.The resulting OS contains a basic input/output system(BIOS)bootloader that boots into Intel 32-bit protected mode,a text display terminal,4 GB paging memory,4096 heap block size,a Hard Disk Drive(HDD)I/O Advanced Technology Attachment(ATA)driver and more.There are also I/O scheduling algorithm prototypes that demonstrate how a simple Sweeping algorithm is superior to more conventionally known I/O scheduling algorithms.A MapReduce prototype is implemented using Message Passing Interface(MPI)for big data purposes.An attempt was made to optimize binary search using modern performance engineering and data-oriented design. 展开更多
关键词 Operating system big data cloud computing MAPREDUCE data-ORIENTED
下载PDF
Research on the Application of Big Data and Cloud Computing Technology in Smart Campus
9
作者 Shengtao Zhou 《Journal of Electronic Research and Application》 2024年第5期6-11,共6页
The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a w... The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models. 展开更多
关键词 Big data cloud computing technology Smart campus APPLICATION
下载PDF
MODEL RECONSTRUCTION FROM CLOUD DATA FOR RAPID PROTOTYPE MANUFACTURING 被引量:1
10
作者 张丽艳 周儒荣 周来水 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期170-175,共6页
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes... Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method. 展开更多
关键词 reverse engineering model reconstruction cloud data data filtering hole filling
下载PDF
Data classification method based on network dynamics analysis and cloud model
11
作者 王肖霞 杨风暴 +1 位作者 梁若飞 张文华 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期266-271,共6页
In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clusteri... In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clustering with cloud model. Firstly, taking data source as a complex network, after the topography of network is obtained, the cloud model of each node data is determined by fuzzy analytic hierarchy process (AHP). Secondly, by calculating expectation, entropy and hyper entropy of the cloud model, comprehensive coupling strength is got and then it is regarded as the edge weight of topography. Finally, distribution curve is obtained by iterating the phase of each node by means of phase synchronization model. Thus classification of data source is completed. This method can not only provide convenience for storage, cleaning and compression of data, but also improve the efficiency of data analysis. 展开更多
关键词 data classification complex network phase synchronization cloud model
下载PDF
Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China 被引量:7
12
作者 Yujie PAN Mingjun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期160-172,共13页
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat... Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast. 展开更多
关键词 cloud analysis radar data ASSIMILATION data ASSIMILATION INTERVAL
下载PDF
A Method for Trust Management in Cloud Computing: Data Coloring by Cloud Watermarking 被引量:8
13
作者 Yu-Chao Liu Yu-Tao Ma +2 位作者 Hai-Su Zhang De-Yi Li Gui-Sheng Chen 《International Journal of Automation and computing》 EI 2011年第3期280-285,共6页
With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dyn... With the development of Internet technology and human computing, the computing environment has changed dramatically over the last three decades. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtuMized resources are provided as services. With virtualization technology, cloud computing offers diverse services (such as virtual computing, virtual storage, virtual bandwidth, etc.) for the public by means of multi-tenancy mode. Although users are enjoying the capabilities of super-computing and mass storage supplied by cloud computing, cloud security still remains as a hot spot problem, which is in essence the trust management between data owners and storage service providers. In this paper, we propose a data coloring method based on cloud watermarking to recognize and ensure mutual reputations. The experimental results show that the robustness of reverse cloud generator can guarantee users' embedded social reputation identifications. Hence, our work provides a reference solution to the critical problem of cloud security. 展开更多
关键词 cloud computing cloud security trust management cloud watermarking data coloring.
下载PDF
On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing 被引量:11
14
作者 Lizhi Xiong Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2018年第6期523-539,共17页
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou... Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels. 展开更多
关键词 cloud data security re-encryption reversible data hiding cloud computing privacy-preserving.
下载PDF
A Data Assured Deletion Scheme in Cloud Storage 被引量:7
15
作者 LI Chaoling CHEN Yue ZHOU Yanzhou 《China Communications》 SCIE CSCD 2014年第4期98-110,共13页
In order to provide a practicable solution to data confidentiality in cloud storage service,a data assured deletion scheme,which achieves the fine grained access control,hopping and sniffing attacks resistance,data dy... In order to provide a practicable solution to data confidentiality in cloud storage service,a data assured deletion scheme,which achieves the fine grained access control,hopping and sniffing attacks resistance,data dynamics and deduplication,is proposed.In our scheme,data blocks are encrypted by a two-level encryption approach,in which the control keys are generated from a key derivation tree,encrypted by an All-OrNothing algorithm and then distributed into DHT network after being partitioned by secret sharing.This guarantees that only authorized users can recover the control keys and then decrypt the outsourced data in an ownerspecified data lifetime.Besides confidentiality,data dynamics and deduplication are also achieved separately by adjustment of key derivation tree and convergent encryption.The analysis and experimental results show that our scheme can satisfy its security goal and perform the assured deletion with low cost. 展开更多
关键词 cloud storage data confidentiality secure data assured deletion data dynamics
下载PDF
Secure Big Data Storage and Sharing Scheme for Cloud Tenants 被引量:10
16
作者 CHENG Hongbing RONG Chunming +2 位作者 HWANG Kai WANG Weihong LI Yanyan 《China Communications》 SCIE CSCD 2015年第6期106-115,共10页
The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in... The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants. 展开更多
关键词 cloud computing big data stor-age and sharing security
下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
17
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
下载PDF
Enable Data Dynamics for Algebraic Signatures Based Remote Data Possession Checking in the Cloud Storage 被引量:4
18
作者 LUO Yuchuan FU Shaojing +1 位作者 XU Ming WANG Dongsheng 《China Communications》 SCIE CSCD 2014年第11期114-124,共11页
Cloud storage is one of the main application of the cloud computing.With the data services in the cloud,users is able to outsource their data to the cloud,access and share their outsourced data from the cloud server a... Cloud storage is one of the main application of the cloud computing.With the data services in the cloud,users is able to outsource their data to the cloud,access and share their outsourced data from the cloud server anywhere and anytime.However,this new paradigm of data outsourcing services also introduces new security challenges,among which is how to ensure the integrity of the outsourced data.Although the cloud storage providers commit a reliable and secure environment to users,the integrity of data can still be damaged owing to the carelessness of humans and failures of hardwares/softwares or the attacks from external adversaries.Therefore,it is of great importance for users to audit the integrity of their data outsourced to the cloud.In this paper,we first design an auditing framework for cloud storage and proposed an algebraic signature based remote data possession checking protocol,which allows a third-party to auditing the integrity of the outsourced data on behalf of the users and supports unlimited number of verifications.Then we extends our auditing protocol to support data dynamic operations,including data update,data insertion and data deletion.The analysis and experiment results demonstrate that our proposed schemes are secure and efficient. 展开更多
关键词 cloud computing cloud storage data integrity algebraic signatures datadynamics
下载PDF
Cloud services with big data provide a solution for monitoring and tracking sustainable development goals 被引量:10
19
作者 Bingfang Wu Fuyou Tian +2 位作者 Miao Zhang Hongwei Zeng Yuan Zeng 《Geography and Sustainability》 2020年第1期25-32,共8页
To achieve the Sustainable Development Goals(SDGs),high-quality data are needed to inform the formulation of policies and investment decisions,to monitor progress towards the SDGs and to evaluate the impacts of polici... To achieve the Sustainable Development Goals(SDGs),high-quality data are needed to inform the formulation of policies and investment decisions,to monitor progress towards the SDGs and to evaluate the impacts of policies.However,the data landscape is changing.With emerging big data and cloud-based services,there are new opportunities for data collection,influencing both official data collection processes and the operation of the programmes they monitor.This paper uses cases and examples to explore the potential of crowdsourcing and public earth observation(EO)data products for monitoring and tracking the SDGs.This paper suggests that cloud-based services that integrate crowdsourcing and public EO data products provide cost-effective solutions for monitoring and tracking the SDGs,particularly for low-income countries.The paper also discusses the challenges of using cloud services and big data for SDG monitoring.Validation and quality control of public EO data is very important;otherwise,the user will be unable to assess the quality of the data or use it with confidence. 展开更多
关键词 Big data cloud services SDGs MONITORING
下载PDF
A Case Study of Impact of FY-2C Satellite Data in Cloud Analysis to Improve Short-Range Precipitation Forecast 被引量:6
20
作者 LIU Rui-Xia CHEN Hong-Bin +1 位作者 CHEN De-Hui XU Guo-Qiang 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期527-533,共7页
Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were us... Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied. 展开更多
关键词 FY-2C satellite data cloud analysis precipitation forecast impact study
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部