期刊文献+
共找到686篇文章
< 1 2 35 >
每页显示 20 50 100
DYNAMIC MODEL OF CROP GROWTH SYSTEM AND NUMERICAL SIMULATION OF CROP GROWTH PROCESS UNDER THE MULTI-ENVIRONMENT EXTERNAL FORCE ACTION
1
作者 李自珍 王万雄 徐彩琳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第6期727-737,共11页
According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explor... According to the biomechanic theory and method, the dynamic mechanism of crop growth under the external force action of multi_environment factors (light, temperature,soil and nutrients etc.) was comprehensively explored.Continuous_time Markov(CTM) approach was adopted to build the dynamic model of the crop growth system and the simulated numerical method. The growth rate responses to the variation of the external force and the change of biomass saturation value were studied. The crop grew in the semiarid area was taken as an example to carry out the numerical simulation analysis, therefore the results provide the quantity basis for the field management. Comparing the dynamic model with the other plant growth model, the superiority of the former is that it displays multi_dimension of resource utilization by means of combining macroscopic with microcosmic and reveals the process of resource transition. The simulation method of crop growth system is advanced and manipulated. A real simulation result is well identical with field observational results. 展开更多
关键词 external force of environment crop growth dynamic model numerical simulation
下载PDF
Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems 被引量:8
2
作者 邓军 方云 +3 位作者 杨立强 杨军臣 孙忠实 王建平 丁式江 王庆飞 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期220-332,共13页
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma... Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone. 展开更多
关键词 fluid system fractal dispersion point-source illuviation model ore-forming dynamics numerical simulation
下载PDF
Multi-parameter numerical simulation of dynamic monitoring of rock deformation in deep mining 被引量:2
3
作者 Li Juanjuan Hu Mingshun +3 位作者 Ding Enjie Kong Wei Pan Dongming Chen Shenen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期851-855,共5页
The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal min... The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods. 展开更多
关键词 dynamic monitoring Electric numerical simulation Elastic numerical simulation inversion methods
下载PDF
Numerical study on dynamic properties of rubberised concrete with different rubber contents
4
作者 Lei Pan Hong Hao +1 位作者 Jian Cui Thong M.Pham 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期228-240,共13页
As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has... As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete. 展开更多
关键词 Rubberised concrete Meso-scale model numerical simulation Strain rate effect dynamic increase factor
下载PDF
Numerical wear study of metal-on-ultrahigh molecular weight polyethylene-based cervical total disc arthroplasty by coupling finite element analysis and multi-body dynamics
5
作者 Hua Xin Lei Zhang +2 位作者 Hao Diao Junhong Jia Zhongmin Jin 《Biosurface and Biotribology》 EI 2021年第4期251-260,共10页
In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical... In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis. 展开更多
关键词 CERVICAL total DISC ARTHROPLASTY FINITE element analysis multi-body dynamics numericAL WEAR simulation
原文传递
Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms 被引量:1
6
作者 章定国 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第10期1283-1294,共12页
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous tra... The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm. 展开更多
关键词 flexible manipulator arm dynamics numerical simulation modeling
下载PDF
Dynamic Modeling and Analysis of Occult Transmission of Omicron SARS-CoV-2 Epidemic
7
作者 Kun Wang Lu Wang Linhua Zhou 《Journal of Applied Mathematics and Physics》 2023年第2期457-477,共21页
At present, the Omicron variant is still the dominant strain in the global novel coronavirus pneumonia pandemic, and has the characteristics of concealed transmission, which brings heavy pressure to the health systems... At present, the Omicron variant is still the dominant strain in the global novel coronavirus pneumonia pandemic, and has the characteristics of concealed transmission, which brings heavy pressure to the health systems of different countries. Omicron infections were first found in Chinese Mainland in Tianjin in December 2021, and Omicron epidemic broke out in many parts of China in 2022. In order to enable the country and government to make scientific and accurate decisions in the face of the epidemic, it is particularly important to predict and analyze the relevant factors of Omicron’s covert transmission. In this paper, based on the official data of Jilin City and the improved SEIR dynamic model, through parameter estimation, the contact infection probability of symptomatic infected persons in Omicron infected patients is 0.4265, and the attenuation factor is 0.1440. Secondly, the influence of infectious duration in different incubation periods, asymptomatic infected persons and other factors on the epidemic situation in this area was compared. Finally, the scale of epidemic development was predicted and analyzed. 展开更多
关键词 Omicron Epidemic Epidemic dynamics model Hidden Transmission numerical simulation
下载PDF
A modified discrete element model for sea ice dynamics 被引量:4
8
作者 LI Baohui LI Hai +2 位作者 LIU Yu WANG Anliang JI Shunying 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期56-63,共8页
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft... Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work. 展开更多
关键词 sea ice dynamics modified discrete element model contact force model numerical simulation
下载PDF
Dynamic simulation and experimental study of inspection robot for high-voltage transmission-line 被引量:6
9
作者 肖晓晖 吴功平 +1 位作者 杜娥 史铁林 《Journal of Central South University of Technology》 EI 2005年第6期726-731,共6页
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ... A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control. 展开更多
关键词 高压线路 线路维护 机器人 动力学模拟 实验研究
下载PDF
Model-Based Approach to Investigate the Influences of Different Load States to the Vehicle Dynamics of Light Electric Vehicles
10
作者 Harry Ott René Degen +1 位作者 Mats Leijon Margot Ruschitzka 《Journal of Transportation Technologies》 2021年第2期213-230,共18页
The need to find alternative urban mobility solutions for delivery and transport has led mobility companies to devote enormous resources for research-based solutions to increase vehicle safety. This paper documents a ... The need to find alternative urban mobility solutions for delivery and transport has led mobility companies to devote enormous resources for research-based solutions to increase vehicle safety. This paper documents a virtual approach to investigate the influences of different load states to the vehicle dynamic of light electric vehicle. A model basing on a three-dimensional </span><span style="font-family:""><span style="font-family:Verdana;">multibody system was used, which consists of five bodies. By applying methods of multibody modelling the generalized equations of motion were generated. To </span><span style="font-family:Verdana;">include the behavior within the contact point between road and vehicle a</span><span style="font-family:Verdana;"> simplified tire models was added. The implementation of the equations allowed a first validation of the model via simulations. In a final modeling step the simulation results were interpreted in respect of plausibility. Afterwards, the model was simulated numerically to investigate different load states of the vehicle, by applying constant steering stimuli and variable velocities. In sum, the investigated model approach is useful to identify safety relevant parameters and shows the effects of load states to the vehicle dynamics. Furthermore, it behaves plausibly regarding general vehicle dynamics. These results prove </span><span style="font-family:Verdana;">the general usability of the model for the development controllers and esti</span><span style="font-family:Verdana;">mators in driver assistances systems. 展开更多
关键词 Vehicle dynamics Multibody System TRICYCLE Rigid model numerical simulation
下载PDF
Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams 被引量:7
11
作者 Wei-jun Cen Lang-sheng Wen +1 位作者 Zi-qi Zhang Kun Xiong 《Water Science and Engineering》 EI CAS CSCD 2016年第3期205-211,共7页
Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab ele... Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam(CFRD), subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method(FEM), with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes. 展开更多
关键词 CONCRETE face ROCKFILL dam Random MESOSCOPIC DAMAGE model SEISMIC response dynamic DAMAGE to CONCRETE SLAB Macrocracking numerical simulation
下载PDF
Dynamic Modeling and Investigation of Maneuver Characteristics of A Deep-Sea Manned Submarine Vehicle 被引量:3
12
作者 谢俊元 须文波 +2 位作者 张华 徐鹏飞 崔维成 《China Ocean Engineering》 SCIE EI 2009年第3期505-516,共12页
A deep-sea Manned Submarine Vehicle (MSV) is usually required to move at a low forward speed and a low rotational speed when it executes investigation tasks. In this condition, the motion is in large drift angles, a... A deep-sea Manned Submarine Vehicle (MSV) is usually required to move at a low forward speed and a low rotational speed when it executes investigation tasks. In this condition, the motion is in large drift angles, and the maneuverability hydrodynamic forces cannot be expressed properly in the conventional mathematical model of submersible motion. In this paper, firstly, a general equation of MSV with six-freedom motion is presented, and the numerical simulation of descent/ascent motion and helix motion is conducted to reveal the general maneuver characteristics of MSV. Secondly, according to the data of captive model tests of large drift angles of MSV, the regression analysis of position hydrodynamic forces and rotation hydrodynamic forces is carried out, and the results of regression analysis of maneuverability hydrody- namic characteristics are analyzed to reveal the special maneuver characteristics. Thirdly, a special new mathematical model of MSV with the whole range of drift angles motion is presented, which can be used to predict hydrodynamic performance of motion in the 0° - 180° range of drift angles. The results are applied to the design of maneuverability hydrodynamic forces, development of control system and simulator of a practical MSV. 展开更多
关键词 Manned Submarine Vehicle MSV) dynamic and kinematic modeling large drift angle numerical simulation
下载PDF
Numerical simulation and experimental verification of bubble size distribution in an air dense medium fluidized bed 被引量:11
13
作者 He Jingfeng Zhao Yuemin +2 位作者 Luo Zhenfu He Yaqun Duan Chenlong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期387-393,共7页
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ... Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB. 展开更多
关键词 Air dense medium fluidized bed numerical simulation Bubble dynamical behavior Prediction model
下载PDF
Dynamic Damage Model of Brittle Rock and Its Application 被引量:1
14
作者 高文学 刘运通 +1 位作者 杨军 黄风雷 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期332-336,共5页
On the basis of shock induced experiments and the ultrasonic tests of the damaged rocks, the damage evolution relation between the attenuation coefficient of sound wave and the damage dissipated energy is described. ... On the basis of shock induced experiments and the ultrasonic tests of the damaged rocks, the damage evolution relation between the attenuation coefficient of sound wave and the damage dissipated energy is described. Based on the TCK and RDA models, a damage model which connects the shock compression and tensile damage is established. And then the damage model is implemented in LS DYNA3D dynamic nonlinear program. Numerical simulation of deep hole blasting of groove is studied by use of the damage model proposed. The rock damage evolution process and the distributing rules of stress field under the explosion load are described well fairly, which provides the theory basis for the engineering blasting design. 展开更多
关键词 brittle rock dynamic damage model numerical simulation
下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:3
15
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 动力学方程 自动化系统 机器人 非线性公式 柔性体
下载PDF
Suiting Dynamic Models of Fixed-Bed Catalytic Reactors for Computer-Based Applications
16
作者 Eduardo Coselli Vasco de Toledo Edvaldo Rodrigo Morais +3 位作者 Delba Nisi Cosme Melo Adriano Pinto Mariano Joao F.C.A.Meyer Rubens Maciel Filho 《Engineering(科研)》 2011年第7期778-785,共8页
This work investigated the applicability of heterogeneous and pseudo-homogeneous models to predict the dynamic behavior of a fixed-bed catalytic reactor. Some issues concerning the dynamic behavior of the system were ... This work investigated the applicability of heterogeneous and pseudo-homogeneous models to predict the dynamic behavior of a fixed-bed catalytic reactor. Some issues concerning the dynamic behavior of the system were discussed, such as the prediction of the inverse response phenomenon. The proposed models (Het- erogeneous I and II and Pseudo-homogeneous) were able to predict with qualitative similarity the main characteristics of the dynamic behavior of a fixed-bed catalytic reactor, including the inverse response. The computational time demanded for the solution of the heterogeneous models was 10 to 50% longer than in the case of the pseudo-homogeneous model, making the use of the former suitable for applications where computational time is not the major restriction (off-line applications). On the other hand, when on-line applications are required, the simplified model (Pseudo-homogeneous model) showed to be a good alternative because this model was able to predict (qualitatively) the dynamics of the reactor using a faster and easier numerical solution. 展开更多
关键词 dynamic models inverse Response FIXED-BED Catalytic Reactors simulation
下载PDF
Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model 被引量:3
17
作者 Nana QI Hui WANG +1 位作者 Kai ZHANG Hu ZHANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期506-514,共9页
The Speziale,Sarkar and Gatski Reynolds Stress Model(SSG RSM)is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller.Four levels of grid resolutions are chosen to dete... The Speziale,Sarkar and Gatski Reynolds Stress Model(SSG RSM)is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller.Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations.CFD model data in terms of the flow field,trailing vortex,and the power number are compared with published experimental results.The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM.The predicted mean velocity components in axial,radial and tangential direction are also in good agreement with experiment data.The power number predicted is quite close to the designed value,which demonstrates that this model can accurately calculate the power number in the stirred tank.Therefore,the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank,and it offers an alternative method for design and optimisation of stirred tanks. 展开更多
关键词 stirred tank fluid dynamics numerical simulation SSG Reynolds Stress model MRF
原文传递
Modelling and numerical simulation of isothermal oxidation of an individual magnetite pellet based on computational fluid dynamics 被引量:1
18
作者 Zhou Pu Feng Zhou +2 位作者 Yue Sun Ming Zhang Bo-quan Li 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第7期799-808,共10页
A mathematical model based on the computational fluid dynamics method,heat and mass transfer in porous media and the unreacted shrinking core model for the oxidation reaction of an individual magnetite pellet during p... A mathematical model based on the computational fluid dynamics method,heat and mass transfer in porous media and the unreacted shrinking core model for the oxidation reaction of an individual magnetite pellet during preheating was established.The commercial software COMSOL Multiphysics was used to simulate the change in the oxidation degree of the pellet at different temperatures and oxygen concentrations,and the simulated results were compared with the exper-imental results.The model considered the influence of the exothermic heat of the reaction,and the enthalpy change was added to calculate the heat released by the oxidation.The results show that the oxidation rate on the surface of the pellet is much faster than that of the inside of the pellet.Temperature and oxygen concentration have great influence on the pellet oxidation model.Meanwhile,the exothermic calculation results show that there is a non-isothermal phenomenon inside the pellet,which leads to an increase in temperature inside the single pellet.Under the preheating condition of 873-1273 K(20%oxygen content),the heat released by the pellet oxidation reaction in a chain grate is 7.8×10^(6)-10.8×10^(6) kJ/h,which is very large and needs to be considered in the magnetite pellet oxidation modelling. 展开更多
关键词 Magnetite pellet OXIDATION numerical simulation Unreacted shrinking core model Computational fluid dynamics
原文传递
Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation 被引量:6
19
作者 Guangchun Song Yuxing Li +3 位作者 Wuchang Wang Kai Jiang Zhengzhuo Shi Shupeng Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期32-43,共12页
Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Ba... Dynamic modeling and numerical simulation of hydrate slurry flow behavior are of great importance to offshore hydrate management.For this purpose, a dynamic model of hydrate agglomeration was proposed in this paper.Based on population balance equation, the frame of the dynamic model was established first, which took both hydrate agglomeration and hydrate breakage into consideration.Then, the calculating methods of four key parameters involved in the dynamic model were given according to hydrate agglomeration dynamics.The four key parameters are collision frequency, agglomeration efficiency, breakage frequency and the size distribution of sub particles resulting from particle breakage.After the whole dynamic model was built, it was combined with several traditional solid–liquid flow models and then together solved by the CFD software FLUENT 14.5.Finally, using this method, the influences of flow rate and hydrate volume fraction on hydrate particle size distribution, hydrate volume concentration distribution and pipeline pressure drop were simulated and analyzed. 展开更多
关键词 HYDRATE AGGLOMERATION Flow behavior dynamic model numerical simulation POPULATION BALANCE
下载PDF
New Model and Simulation of Condenser for Ship Nuclear Power Plant 被引量:1
20
作者 BIAN Xin-Qian, YANG Ben-kun, SHI JiCallege of Power and Nuclear Engineering, Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2002年第1期35-40,共6页
A new reasonably perfect dynamic mathematic model has been established for condenser used in ship nuclear powerplant according to its structural features and Operating principle. The model has been solved by the Runge... A new reasonably perfect dynamic mathematic model has been established for condenser used in ship nuclear powerplant according to its structural features and Operating principle. The model has been solved by the Runge-Kutta method. Andan analysis program has been developed for dynamic numerical simulation under steady operation condition, disturbance condi-tion, and accident condition. The dynamic characteristics of condenser has been calculated and analyzed under several kinds 展开更多
关键词 CONDENSER dynamic MATHEMATICAL model Runge - Kutta method numericAL simulation
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部