期刊文献+
共找到14,828篇文章
< 1 2 250 >
每页显示 20 50 100
Configuration and Kinematics of a 3-DOF Generalized Spherical Parallel Mechanism for Ankle Rehabilitation
1
作者 Jianjun Zhang Shuai Yang +2 位作者 Chenglei Liu Xiaohui Wang Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期176-188,共13页
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum... The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification. 展开更多
关键词 Ankle rehabilitation Parallel mechanism kinematic analysis Parameter optimization
下载PDF
Kinematics ofmandibular advancement devices(MADs):Why do some MADs move the lower jaw backward duringmouth opening?
2
作者 Juan A.Cabrera Alex Bataller +1 位作者 Sergio Postigo Marcos García 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期637-650,共14页
Mandibular advancement devices(MADs)are widely used treatments for obstructive sleep apnea.MADs function by advancing the lower jaw to open the upper airway.To increase patient comfort,most patients allow the mouth to... Mandibular advancement devices(MADs)are widely used treatments for obstructive sleep apnea.MADs function by advancing the lower jaw to open the upper airway.To increase patient comfort,most patients allow the mouth to be opened.However,not all systems maintain the lower jaw in a forward position during mouth opening,which results in the production of a retrusion that favors the collapse of the upper airway.Furthermore,the kinematic behavior of the mechanism formed by the mandible-device assembly depends on jaw morphology.This means that,during mouth opening,some devices cause lower jaw protrusion in some patients,but cause its retraction in others.In this study,we report the behavior of well-known devices currently on themarket.To do so,we developed a kinematic model of the lower jawdevice assembly.Thismodelwas validated for all devices analyzed using a high-resolution camera system.Our results show that some of the devices analyzed here did not produce the correct behavior during patient mouth opening. 展开更多
关键词 Mandibular advancement devices Lower jaw kinematics Sleep apnea
下载PDF
Acute effect of foot strike patterns on in vivo tibiotalar and subtalar joint kinematics during barefoot running
3
作者 Dongqiang Ye Lu Li +4 位作者 Shen Zhang Songlin Xiao Xiaole Sun Shaobai Wang Weijie Fu 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期108-117,共10页
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte... Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running. 展开更多
关键词 Foot strike patterns High-speed dual fluoroscopic imaging system In vivo kinematics Running
下载PDF
Kinematics simulation and application for machine tool based on multi-body system theory 被引量:2
4
作者 吴南星 孙庆鸿 +1 位作者 余冬玲 潘玉安 《Journal of Southeast University(English Edition)》 EI CAS 2004年第2期162-164,共3页
Based on the multi-body kinematics principle, the topological structure and restriction relation among parts of machine tool and 3D multi-body model are constructed, the kinematics simulation system of machine tool is... Based on the multi-body kinematics principle, the topological structure and restriction relation among parts of machine tool and 3D multi-body model are constructed, the kinematics simulation system of machine tool is developed. The designer can observe the movement and machining course of the whole machine tool and understand accurately the kinematics parameters of components such as position, velocity and acceleration. Also the designer can estimate the pose of components in the virtual circumstance and forecast accurately and correct problems which may appear during the design before the prototype is manufactured to assure the feasibility of design scheme, shorten period of product design and reduce product cost. The simulation system is used during the design of CK1416 high speed and precision numerical control lathe. The curves of ball screw angular velocity and carriage displacement agree well with the results of theoretical calculation and the constructed model is correct. 展开更多
关键词 FLOWCHARTING kinematics Numerical control systems Virtual reality
下载PDF
3D Kinematics of Classical Cepheids According to Gaia EDR3 Catalog
5
作者 V.V.Bobylev A.T.Bajkova 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第4期1-14,共14页
The kinematics of about 2000 classical Cepheids of the Milky Way with data from Gaia EDR3 catalog has been studied.For some of these stars,there are line-of-sight velocities.On the basis of the nonlinear rotation mode... The kinematics of about 2000 classical Cepheids of the Milky Way with data from Gaia EDR3 catalog has been studied.For some of these stars,there are line-of-sight velocities.On the basis of the nonlinear rotation model,the parameters of the rotation curve of the Galaxy were determined.The circular linear rotation velocity of the near-solar neighborhood around the Galaxy center was V0=236±3 km s^(−1) for the assumed Sun's galactocentric distance R0=8.1±0.1 kpc.Analysis of residual velocities of Cepheids based on the linear Ogorodnikov–Milne model showed the presence of the following significantly different from zero gradients:∂U/∂x,∂U/∂z,∂V/∂x,∂V/∂z and∂W/∂x,which behave differently depending on the selection radius.The most interesting is the gradient∂W/∂x∼−0.5±0.1 km s^(−1) kpc^(−1)(positive rotation of this star system around the Galactic axis y,Ωy)since the velocities W are free of Galactic rotation.Here we have an indirect influence of various effects leading to a perturbation of the vertical velocities of the Galactic disk stars.Based on a simpler model,a more accurate estimate of this rotation is obtained,Ωy=0.51±0.07 km s^(−1) kpc^(−1). 展开更多
关键词 STARS distances-Galaxy kinematics and dynamics-stars VARIABLES CEPHEIDS
下载PDF
Velocity Dispersion σ_(aper)Aperture Corrections as a Function of Galaxy Properties from Integral-field Stellar Kinematics of 10,000 MaNGA Galaxies
6
作者 Kai Zhu Ran Li +3 位作者 Xiaoyue Cao Shengdong Lu Michele Cappellari Shude Mao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第8期53-64,共12页
The second moment of the stellar velocity within the effective radius,denoted by σ^(2)_(e),is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,la... The second moment of the stellar velocity within the effective radius,denoted by σ^(2)_(e),is a crucial quantity in galaxy studies,as it provides insight into galaxy properties and their mass distributions.However,large spectroscopic surveys typically do not measure σ_(e) directly,instead providing σ_(aper),the second moment of the stellar velocity within a fixed fiber aperture.In this paper,we derive an empirical aperture correction formula,given byσ_(aper)/σ_(e)=(R_(aper)/R_(e))^(α),using spatially resolved stellar kinematics extracted from approximately 10,000 Sloan Digital Sky Survey-Mapping Nearby Galaxies at Apache Point Observatory integral field unit observations.Our analysis reveals a strong dependence ofαon the r-band absolute magnitude M_(r),g-i color,and Sérsic index nSer,whereαvalues are lower for brighter,redder galaxies with higher Sérsic indices.Our results demonstrate that the aperture correction derived from previous literature on early-type galaxies cannot be applied to predict the aperture corrections for galaxies with intermediate Sérsic indices.We provide a lookup table ofαvalues for different galaxy types,with parameters in the ranges of-18>M_(r)>-24,0.4<g-i<1.6,and 0<n_(Ser)<8.A Python script is provided to obtain the correction factors from the lookup table. 展开更多
关键词 GALAXIES evolution-galaxies formation-galaxies kinematics and dynamics-galaxies structure
下载PDF
Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics
7
作者 Xianghao Zhan Yiheng Li +11 位作者 Yuzhe Liu Nicholas J.Cecchi Samuel J.Raymond Zhou Zhou Hossein Vahid Alizadeh Jesse Ruan Saeed Barbat Stephen Tiernan Olivier Gevaert Michael M.Zeineh Gerald A.Grant David B.Camarillo 《Journal of Sport and Health Science》 SCIE CAS CSCD 2023年第5期619-629,F0003,共12页
Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of ... Background:Traumatic brain injury can be caused by head impacts,but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo,and the characteristics of different types of impacts are not well studied.We investigated the spectral characteristics of different head impact types with kinematics classification.Methods:Data were analyzed from 3262 head impacts from lab reconstruction,American football,mixed martial arts,and publicly available car crash data.A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types(e.g.,football,car crash,mixed martial arts).To test the classifier robustness,another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards.Finally,with the classifier,type-specific,nearest-neighbor regression models were built for brain strain.Results:The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets.The most important features in the classification included both low-and high-frequency features,both linear acceleration features and angular velocity features.Different head impact types had different distributions of spectral densities in low-and high-frequency ranges(e.g.,the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range).The type-specific regression showed a generally higher R2value than baseline models without classification.Conclusion:The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports,and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation. 展开更多
关键词 Classification Contact sports Head impacts Impact kinematics Traumatic brain injuryTagedAPTARAEnd
下载PDF
Kinematic deformation and intensity assessment of the 2021 Maduo M_(S)7.4 earthquake in Qinghai revealed by high-frequency GNSS
8
作者 Yu Li Yuebing Wang +2 位作者 Lijiang Zhao Hongbo Shi Pingping Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第3期230-240,共11页
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance... Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future. 展开更多
关键词 Maduo earthquake High-frequency GNSS kinematic deformation Seismic intensity
下载PDF
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
9
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergence δderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP) formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃ to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 Tibetan Plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation RIMING
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
10
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
Kinematic-mapping-model-guided analysis and optimization of 2-PSS&1-RR circular-rail parallel mechanism for fully steerable phased array antennas
11
作者 Guodong Tan Xiangfei Meng +4 位作者 Xuechao Duan Lulu Cheng Dingchao Niu Shuai He Dan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期136-154,共19页
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In... This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount. 展开更多
关键词 Innovative antenna mount Circular rail kinematic mapping model Crank-slider linkage Stiffness singularity BACKTRACKING
下载PDF
Kinematic calibration under the expectation maximization framework for exoskeletal inertial motion capture system
12
作者 QIN Weiwei GUO Wenxin +2 位作者 HU Chen LIU Gang SONG Tainian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期769-779,共11页
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ... This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method. 展开更多
关键词 human motion capture kinematic calibration EXOSKELETON gyroscopic drift expectation maximization(EM)
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
13
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Mid-term outcomes of a kinematically designed cruciate retaining total knee arthroplasty
14
作者 Jonathan L Katzman Akram A Habibi +4 位作者 Muhammad A Haider Casey Cardillo Ivan Fernandez-Madrid Morteza Meftah Ran Schwarzkopf 《World Journal of Orthopedics》 2024年第2期118-128,共11页
BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the nativ... BACKGROUND Advances in implant material and design have allowed for improvements in total knee arthroplasty(TKA)outcomes.A cruciate retaining(CR)TKA provides the least constraint of TKA designs by preserving the native posterior cruciate ligament.Limited research exists that has examined clinical outcomes or patient reported outcome measures(PROMs)of a large cohort of patients undergoing a CR TKA utilizing a kinematically designed implant.It was hypothesized that the studied CR Knee System would demonstrate favorable outcomes and a clinically significant improvement in pain and functional scores.AIM To assess both short-term and mid-term clinical outcomes and PROMs of a novel CR TKA design.METHODS A retrospective,multi-surgeon study identified 255 knees undergoing a TKA utilizing a kinematically designed CR Knee System(JOURNEY™II CR;Smith and Nephew,Inc.,Memphis,TN)at an urban,academic medical institution between March 2015 and July 2021 with a minimum of two-years of clinical follow-up with an orthopedic surgeon.Patient demographics,surgical information,clinical outcomes,and PROMs data were collected via query of electronic medical records.The PROMs collected in the present study included the Knee Injury and Osteoarthritis Outcome Score for Joint Replacement(KOOS JR)and Patient-Reported Outcomes Measurement Information System(PROMIS■)scores.The significance of improvements in mean PROM scores from preoperative scores to scores collected at six months and two-years postoperatively was analyzed using Independent Samples t-tests.RESULTS Of the 255 patients,65.5%were female,43.8%were White,and patients had an average age of 60.6 years.Primary osteoarthritis(96.9%)was the most common primary diagnosis.The mean surgical time was 105.3 minutes and mean length of stay was 2.1 d with most patients discharged home(92.5%).There were 18 emergency department(ED)visits within 90 d of surgery resulting in a 90 d ED visit rate of 7.1%,including a 2.4%orthopedic-related ED visit rate and a 4.7%non-orthopedic-related ED visit rate.There were three(1.2%)hospital readmissions within 90 d postoperatively.With a mean time to latest follow-up of 3.3 years,four patients(1.6%)required revision,two for arthrofibrosis,one for aseptic femoral loosening,and one for peri-prosthetic joint infection.There were significant improvements in KOOS JR,PROMIS Pain Intensity,PROMIS Pain Interference,PROMIS Mobility,and PROMIS Physical Health from preoperative scores to six month and two-year postoperative scores.CONCLUSION The evaluated implant is an effective,novel design offering excellent outcomes and low complication rates.At a mean follow up of 3.3 years,four patients required revisions,three aseptic and one septic,resulting in an overall implant survival rate of 98.4%and an aseptic survival rate of 98.8%.The results of our study demonstrate the utility of this kinematically designed implant in the setting of primary TKA. 展开更多
关键词 Total knee arthroplasty Cruciate retaining kinematic design SURVIVORSHIP Bearing material Prosthetic design Clinical outcomes Patient-reported outcome measures
下载PDF
3-Dimensional Kinematic Comparison of Arm Movements between an Individual with NGLY1 Deficiency and a Neurotypical Individual
15
作者 Charles S. Layne Christopher A. Malaya +6 位作者 Brock Futrell Dacia Martinez Diaz Christian Alfaro Hannah E. Gustafson Subhalakshmi Chandrasekaran Rhea M. Phatak Bernhard Suter 《Case Reports in Clinical Medicine》 2024年第4期122-146,共25页
NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems ... NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets;2) goal-directed reaches that included grasping an object;3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies. 展开更多
关键词 NGLY1 Deficiency Developmental Disorders kinematics 3 Dimensional Analyses
下载PDF
Three Dimensional Kinematics Analysis of the Independent Suspension Multibody System 被引量:2
16
作者 陈欣 林逸 +1 位作者 孙大刚 白文辉 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期80-86,共7页
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t... Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances. 展开更多
关键词 independent suspension three dimension kinematic analysis multibody system
下载PDF
Kinematics and dynamics analysis of a 3-7R parallel decoupling mechanism 被引量:2
17
作者 郑建勇 史金飞 +1 位作者 张志胜 李为民 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期183-187,共5页
One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ... One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc. 展开更多
关键词 3-7R parallel decoupling mechanism kinematics DYNAMICS DECOUPLING
下载PDF
A simplified model for extreme-wave kinematics in deep sea 被引量:1
18
作者 滕斌 宁德志 《Journal of Marine Science and Application》 2009年第1期27-32,共6页
Based on the fifth-order Stokes regular wave theory, a simplified model for extreme-wave kinematics in deep sea was developed. In this model, from the wave records the average of two neighboring wave periods for the e... Based on the fifth-order Stokes regular wave theory, a simplified model for extreme-wave kinematics in deep sea was developed. In this model, from the wave records the average of two neighboring wave periods for the extreme crest or trough was defined as the period of the Stokes wave by the up and down zero-crossing methods. Then the input wave amplitude was deduced by substituting the wave period and extreme crest or trough into the expression for the fifth-order Stokes wave elevation. Thus the corresponding formula for the wave velocity can be used to describe kinematics beneath the extreme wave. By comparison with the published numerical models and experimental data, the proposed model is validated to be able to calculate the extreme wave velocity rather easily and accurately. 展开更多
关键词 extreme wave deep sea fifth-order Stokes regular wave kinematics velocity field
下载PDF
INVERSE KINEMATICS FOR A 6 DOF MANIPULATOR BASED ON NEURAL NETWORK
19
作者 张伟 丁秋林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期76-79,共4页
A methodology is presented whereby a neural network is used to learn the inverse kinematic relationships of the position and orientation of a six joint manipulator. The arm solution for the orientation of a manipulato... A methodology is presented whereby a neural network is used to learn the inverse kinematic relationships of the position and orientation of a six joint manipulator. The arm solution for the orientation of a manipulator using a self organizing neural net is studied in this paper. A new training model of the self organizing neural network is proposed by thoroughly studying Martinetz, Ritter and Schulten′s self organizing neural network based on Kohonen′s self organizing mapping algorithm using a Widrow Hoff type error correction rule and closely combining the characters of the inverse kinematic relationship for a robot arm. The computer simulation results for a PUMA 560 robot show that the proposed method has a significant improvement over other methods documented in the references in self organizing capability and precision by training process. 展开更多
关键词 neural networks ROBOTS inverse kinematics unsupervised learning topology conserving maps
下载PDF
KINEMATICS FEATURE ANALYSIS OF A 3-DOF COMPLIANT MECHANISM FOR MICRO MANIPULATION 被引量:22
20
作者 YuJingjun HuYida +2 位作者 BiShusheng ZongGuanghua ZhaoWei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期127-131,共5页
Kinematics and its related issues of a 3-DOF in-parallel compliant mechanismare focused on. The micro manipulation application that requires high accuracy is developed. Designof the developed micromanipulator is based... Kinematics and its related issues of a 3-DOF in-parallel compliant mechanismare focused on. The micro manipulation application that requires high accuracy is developed. Designof the developed micromanipulator is based on the modified Delta mechanism. The main advantages ofthis manipulator are the use of only revolute flexure hinges and the capability to produce puretranslation theoretically. The aim is to develop an efficient kinematic model used for positioningcontrol. For this purpose, the Jacobian matrix relating the end effector position with the actuatordisplacements is obtained by both theoretical derivation and experiment. Aiming at the abnormalityin the motion capabilities of the micromanipulator found in calibration experiment, the mobility ofthe compliant mechanism on a theoretical level is analyzed by using the matrix method and screwtheory. Both the experimental and theoretical results have verified that the compliant mechanismdoes have rotational motion. 展开更多
关键词 Compliant mechanism kinematics CALIBRATION MOBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部