Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load...According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.展开更多
Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety...Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.展开更多
Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting expe...Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting experiment with different stemming lengths was carried out and the results show that the theoretical stemming length, which is 0.73 ~ 0.8 time of burden, is in the range of the experiential length, which is O. 63 - O. 88 time of burden. The blasting results of field experiments with theoretical stemming length are satisfactory, which shows the theoretical derivation and analysis are correct and reliable. The results will supply rock blasting with the theoretical gist of parameters design.展开更多
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par...A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation.展开更多
针对BLAST(Bell labs layered space time)系统中其他小区的干扰会影响本小区BLAST接收机性能的缺点,提出一种基于博弈论的干扰避免算法.该算法为避免交互干扰,以最大化每个小区的平均信息量代替最大化所有小区的总信息量,并将BLAST系...针对BLAST(Bell labs layered space time)系统中其他小区的干扰会影响本小区BLAST接收机性能的缺点,提出一种基于博弈论的干扰避免算法.该算法为避免交互干扰,以最大化每个小区的平均信息量代替最大化所有小区的总信息量,并将BLAST系统中多个小区的干扰进行博弈论数学建模.仿真结果表明,该算法可减少小区间相互干扰,提高BLAST接收机的解码性能,增加BLAST接收机的互信息量.展开更多
The dust distribution law acting at the top of a blast fumace(BF)is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service lif...The dust distribution law acting at the top of a blast fumace(BF)is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service life of detection equipment.The harsh environment inside a BF makes it difficult to describe the dust disthibution.This paper adresses this problem by proposing a dust distribution k-Sε-u_(p)model based on interphase(gas-powder)coupling.The proposed model is coupled with a k-Sεmodel(which describes gas flow movement)and a u_(p)model(which depicts dust movement).First,the kinetic energy equation and turbulent dissipation rate equation in the k-Sεmodel are established based on the modeling theory and single Green-function two scale direct interaction approximation(SGF-TSDIA)theory.Second,a dust particle mnovement u_(p)model is built based on a force analysis of the dust and Newton's laws of motion.Finally,a coupling factor that descibes the interphase interaction is proposed,and the k-Sε-u_(p)model,with clear physical meaning.ligorous mathematical logic,and adequate generality,is dleveloped.Siumulation results and o-site verification show that the k-Sε-u_(p)model not only has high precision,but also reveals the aggregate distribution features of the dust,which are helpful in optimizing the installation position of the detection equipment and imnproving its accuracy and service life.展开更多
In many cases, biological sequence databases contain redundant sequences that make it difficult to achieve reliable statistical analysis. Removing the redundant sequences to find all the real protein families and thei...In many cases, biological sequence databases contain redundant sequences that make it difficult to achieve reliable statistical analysis. Removing the redundant sequences to find all the real protein families and their representatives from a large sequences dataset is quite important in bioinformatics. The problem of removing redundant protein sequences can be modeled as finding the maximum independent set from a graph, which is a NP problem in Mathematics. This paper presents a novel program named FastCluster on the basis of mathematical graph theory. The algorithm makes an improvement to Hobohm and Sander’s algorithm to generate non-redundant protein sequence sets. FastCluster uses BLAST to determine the similarity between two sequences in order to get better sequence similarity. The algorithm’s performance is compared with Hobohm and Sander’s algorithm and it shows that Fast- Cluster can produce a reasonable non-redundant pro- tein set and have a similarity cut-off from 0.0 to 1.0. The proposed algorithm shows its superiority in generating a larger maximal non-redundant (independent) protein set which is closer to the real result (the maximum independent set of a graph) that means all the protein families are clustered. This makes Fast- Cluster a valuable tool for removing redundant protein sequences.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
基金Project(50490272) supported by the National Natural Science Foundation of China Project(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.
文摘Based on the blasting theory and stress wave theory, stemming mechanism and movement of stemmed material in rock blasting were analyzed and the calculation expression of stemming lengths was deduced. The blasting experiment with different stemming lengths was carried out and the results show that the theoretical stemming length, which is 0.73 ~ 0.8 time of burden, is in the range of the experiential length, which is O. 63 - O. 88 time of burden. The blasting results of field experiments with theoretical stemming length are satisfactory, which shows the theoretical derivation and analysis are correct and reliable. The results will supply rock blasting with the theoretical gist of parameters design.
基金financially supported by National Key R&D Program of China(Grant No.2020YFA0711802)National Nature Science Foundation of China(Grant Nos.51439008 and 51779248).
文摘A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation.
文摘针对BLAST(Bell labs layered space time)系统中其他小区的干扰会影响本小区BLAST接收机性能的缺点,提出一种基于博弈论的干扰避免算法.该算法为避免交互干扰,以最大化每个小区的平均信息量代替最大化所有小区的总信息量,并将BLAST系统中多个小区的干扰进行博弈论数学建模.仿真结果表明,该算法可减少小区间相互干扰,提高BLAST接收机的解码性能,增加BLAST接收机的互信息量.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61621062)the National Major Scientific Research Equipment of China(61927803)+1 种基金the National Natural Science Foundation of China(61933015)National Natural Science Foundation for Young Scholars of China(61903325)。
文摘The dust distribution law acting at the top of a blast fumace(BF)is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service life of detection equipment.The harsh environment inside a BF makes it difficult to describe the dust disthibution.This paper adresses this problem by proposing a dust distribution k-Sε-u_(p)model based on interphase(gas-powder)coupling.The proposed model is coupled with a k-Sεmodel(which describes gas flow movement)and a u_(p)model(which depicts dust movement).First,the kinetic energy equation and turbulent dissipation rate equation in the k-Sεmodel are established based on the modeling theory and single Green-function two scale direct interaction approximation(SGF-TSDIA)theory.Second,a dust particle mnovement u_(p)model is built based on a force analysis of the dust and Newton's laws of motion.Finally,a coupling factor that descibes the interphase interaction is proposed,and the k-Sε-u_(p)model,with clear physical meaning.ligorous mathematical logic,and adequate generality,is dleveloped.Siumulation results and o-site verification show that the k-Sε-u_(p)model not only has high precision,but also reveals the aggregate distribution features of the dust,which are helpful in optimizing the installation position of the detection equipment and imnproving its accuracy and service life.
文摘In many cases, biological sequence databases contain redundant sequences that make it difficult to achieve reliable statistical analysis. Removing the redundant sequences to find all the real protein families and their representatives from a large sequences dataset is quite important in bioinformatics. The problem of removing redundant protein sequences can be modeled as finding the maximum independent set from a graph, which is a NP problem in Mathematics. This paper presents a novel program named FastCluster on the basis of mathematical graph theory. The algorithm makes an improvement to Hobohm and Sander’s algorithm to generate non-redundant protein sequence sets. FastCluster uses BLAST to determine the similarity between two sequences in order to get better sequence similarity. The algorithm’s performance is compared with Hobohm and Sander’s algorithm and it shows that Fast- Cluster can produce a reasonable non-redundant pro- tein set and have a similarity cut-off from 0.0 to 1.0. The proposed algorithm shows its superiority in generating a larger maximal non-redundant (independent) protein set which is closer to the real result (the maximum independent set of a graph) that means all the protein families are clustered. This makes Fast- Cluster a valuable tool for removing redundant protein sequences.