Hydrocarbon exploration has evolved over the years from shallow subsurface to deep subsurface prospecting in both onshore and marine environment.In accordance,technical development has encouraged exploration of unconv...Hydrocarbon exploration has evolved over the years from shallow subsurface to deep subsurface prospecting in both onshore and marine environment.In accordance,technical development has encouraged exploration of unconventional reservoirs and development of deeply buried ones.The deeply buried carbonate reservoir in the Tarim Basin have attracted considerable attention(Lee,1985;Neil,1997;Jin et al.,2009,2015).Such deeply buried reservoirs requires careful and accurate well landing and borehole navigation through multiple regions of HC accumulation and precise well closing process involving accurate selection of positions for screens and so on.展开更多
This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collec...This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collected and three failure criteria were studied.Based on the Kirsch equations,relatively accurate major horizontal stress(sH)estimations from known minor horizontal stress(sh)were achieved with percentage errors ranging from 0.33%to 44.08%using the breakout width.The Mogi-Coulomb failure criterion(average error:13.1%)outperformed modified Wiebols-Cook(average error:19.09%)and modified Lade(average error:18.09%)failure criteria.However,none of the tested constitutive models could yield reasonable sh predictions from known sH using the same approach due to the analytical expression of the redistributed stress and the nature of the constitutive models.In consideration of this issue,the horizontal stress ratio(sH/sh)is suggested as an alternative input,which could estimate both sH and sh with the same level of accuracy.Moreover,the estimation accuracies for both large-scale and laboratory-scale breakouts are comparable,suggesting the applicability of this approach across different breakout sizes.For breakout depth,conformal mapping and complex variable method were used to calculate the stress concentration around the breakout tip,allowing the expression of redistributed stresses using binomials composed of sH and sh.Nevertheless,analysis of the breakout depth stabilisation mechanism indicates that additional parameters are required to utilise normalised breakout depth for stress estimation compared to breakout width.These parameters are challenging to obtain,especially under field conditions,meaning utilising normalised breakout depth analytically in practical applications faces significant challenges and remains infeasible at this stage.Nonetheless,the normalised breakout depth should still be considered a critical input for any empirical and statistical stress estimation method given its significant correlation with horizontal stresses.The outcome of this paper is expected to contribute valuable insights into the breakout stabilisation mechanisms and estimation of in situ stress magnitudes based on borehole breakout geometries.展开更多
As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because ...As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because it can significantly improve the productivity of a single well, inhibit coning and enhance oil recovery. Study on sweep efficiency and parameters optimization of multi-branch horizontal well is at the leading edge of research. Therefore, the study is important for enhancing oil recovery and integral exploitation benefit of oil fields. In many applications, streamline simulation shows particular advantages over finite-difference simulation. With the advantages of streamline simulation such as its ability to display paths of fluid flow and acceleration factor in simulation, the flooding process is more visual. The communication between wells and flooding area has been represented appropriately. This method has been applied to the XS9 reservoir in Daqing Oilfield. The production history of this reservoir is about 10 years. The reservoir is maintained above bubble point so that the simulation meets the slight compressibility assumption. New horizontal wells are drilled following this rule.展开更多
To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nin...To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.展开更多
This study aimed to demonstrate the application of Long Reach Directionally Drilled Boreholes(LRDD)for gas drainage of adjacent seams before and during the longwall face operations of low permeability-high gas content...This study aimed to demonstrate the application of Long Reach Directionally Drilled Boreholes(LRDD)for gas drainage of adjacent seams before and during the longwall face operations of low permeability-high gas content coals Staszic-Wujek Hard Coal Mine in the Upper Silesia Coal Basin(Poland).Five LRDD Boreholes(TM1a-TM5)with a length of 300 and 400 m were located over coal seam 501 in the fractured zone and monitored over six months of longwall face operations.LRDD Boreholes were combined with Cross-Measured Boreholes.Reservoir characterization and geological modeling supported the results obtained from gas drainage.The drainage efficiency of LRDD Boreholes was the approxi-mately 70%level,while conventional Cross-Measured Boreholes were only 30%.The highest goaf gas quality(94%methane concentration)was reported for TM4,placed at an average elevation of 41 m above coal seam 501.The highest goaf gas production(average 6.2 m^(3)/min)was reported for LRDD Borehole TM3.This borehole was placed within the fracture zone(average elevation of 24.4 m)and drilled through the sandstone lithotype with the best reservoir properties,enhancing drainage performance.LRDD Boreholes TM2 and TM4 achieved similar performance.These three LRDD Boreholes were drilled close to the maximum principal horizontal stress direction,providing borehole stability during under-mining.The lowest goaf gas production was reported for LRDD Boreholes TM1a and TM5.Both Boreholes were placed in the rubble zone.展开更多
为提高井底高温区地热能开采效率,文章构建了一种用于水平地热井开采的喷射式同轴套管换热器。基于有限体积法建立水平段近井底区三维数值仿真模型,对比分析外进内出型(Outside-in and Inside-out type,OI)、内进外出型(Inside-in and O...为提高井底高温区地热能开采效率,文章构建了一种用于水平地热井开采的喷射式同轴套管换热器。基于有限体积法建立水平段近井底区三维数值仿真模型,对比分析外进内出型(Outside-in and Inside-out type,OI)、内进外出型(Inside-in and Outside-out type,IO)和喷射式(Jet Inlet,IOI)同轴套管换热器的流场和温度场,揭示了喷射式换热器强化传热机理。结果表明:IOI型换热器内流体的湍动能增加,并形成涡旋,提高了地热开采效率。通过对比采热性能发现,努塞尔数随质量流量增加而增加,IOI型的努塞尔数比其他两者分别高18.33%~32.48%和5.33%~18.84%;摩擦系数随质量流量增加而降低;相同质量流量下,IOI型换热器热增强系数比其他两者分别高9.13%~13.58%和3.61%~10.24%;IOI型的平均采出温度和平均延米换热量始终在三者中最高。研究结果为提高水平地热井同轴套管式换热器开采效率提供理论依据。展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(NO.XDA140500001)
文摘Hydrocarbon exploration has evolved over the years from shallow subsurface to deep subsurface prospecting in both onshore and marine environment.In accordance,technical development has encouraged exploration of unconventional reservoirs and development of deeply buried ones.The deeply buried carbonate reservoir in the Tarim Basin have attracted considerable attention(Lee,1985;Neil,1997;Jin et al.,2009,2015).Such deeply buried reservoirs requires careful and accurate well landing and borehole navigation through multiple regions of HC accumulation and precise well closing process involving accurate selection of positions for screens and so on.
基金funded by the Australian Coal Industry’s Research Program(ACARP,Grant No.C26063).
文摘This study aims to investigate the feasibility of deriving in situ horizontal stresses from the breakout width and depth using the analytical method.Twenty-three breakout data with different borehole sizes were collected and three failure criteria were studied.Based on the Kirsch equations,relatively accurate major horizontal stress(sH)estimations from known minor horizontal stress(sh)were achieved with percentage errors ranging from 0.33%to 44.08%using the breakout width.The Mogi-Coulomb failure criterion(average error:13.1%)outperformed modified Wiebols-Cook(average error:19.09%)and modified Lade(average error:18.09%)failure criteria.However,none of the tested constitutive models could yield reasonable sh predictions from known sH using the same approach due to the analytical expression of the redistributed stress and the nature of the constitutive models.In consideration of this issue,the horizontal stress ratio(sH/sh)is suggested as an alternative input,which could estimate both sH and sh with the same level of accuracy.Moreover,the estimation accuracies for both large-scale and laboratory-scale breakouts are comparable,suggesting the applicability of this approach across different breakout sizes.For breakout depth,conformal mapping and complex variable method were used to calculate the stress concentration around the breakout tip,allowing the expression of redistributed stresses using binomials composed of sH and sh.Nevertheless,analysis of the breakout depth stabilisation mechanism indicates that additional parameters are required to utilise normalised breakout depth for stress estimation compared to breakout width.These parameters are challenging to obtain,especially under field conditions,meaning utilising normalised breakout depth analytically in practical applications faces significant challenges and remains infeasible at this stage.Nonetheless,the normalised breakout depth should still be considered a critical input for any empirical and statistical stress estimation method given its significant correlation with horizontal stresses.The outcome of this paper is expected to contribute valuable insights into the breakout stabilisation mechanisms and estimation of in situ stress magnitudes based on borehole breakout geometries.
文摘As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because it can significantly improve the productivity of a single well, inhibit coning and enhance oil recovery. Study on sweep efficiency and parameters optimization of multi-branch horizontal well is at the leading edge of research. Therefore, the study is important for enhancing oil recovery and integral exploitation benefit of oil fields. In many applications, streamline simulation shows particular advantages over finite-difference simulation. With the advantages of streamline simulation such as its ability to display paths of fluid flow and acceleration factor in simulation, the flooding process is more visual. The communication between wells and flooding area has been represented appropriately. This method has been applied to the XS9 reservoir in Daqing Oilfield. The production history of this reservoir is about 10 years. The reservoir is maintained above bubble point so that the simulation meets the slight compressibility assumption. New horizontal wells are drilled following this rule.
基金Projects(50934002,51104011)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Key Technologies R&D Program during the 12th Five-year Plan of China
文摘To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.
文摘This study aimed to demonstrate the application of Long Reach Directionally Drilled Boreholes(LRDD)for gas drainage of adjacent seams before and during the longwall face operations of low permeability-high gas content coals Staszic-Wujek Hard Coal Mine in the Upper Silesia Coal Basin(Poland).Five LRDD Boreholes(TM1a-TM5)with a length of 300 and 400 m were located over coal seam 501 in the fractured zone and monitored over six months of longwall face operations.LRDD Boreholes were combined with Cross-Measured Boreholes.Reservoir characterization and geological modeling supported the results obtained from gas drainage.The drainage efficiency of LRDD Boreholes was the approxi-mately 70%level,while conventional Cross-Measured Boreholes were only 30%.The highest goaf gas quality(94%methane concentration)was reported for TM4,placed at an average elevation of 41 m above coal seam 501.The highest goaf gas production(average 6.2 m^(3)/min)was reported for LRDD Borehole TM3.This borehole was placed within the fracture zone(average elevation of 24.4 m)and drilled through the sandstone lithotype with the best reservoir properties,enhancing drainage performance.LRDD Boreholes TM2 and TM4 achieved similar performance.These three LRDD Boreholes were drilled close to the maximum principal horizontal stress direction,providing borehole stability during under-mining.The lowest goaf gas production was reported for LRDD Boreholes TM1a and TM5.Both Boreholes were placed in the rubble zone.
文摘为提高井底高温区地热能开采效率,文章构建了一种用于水平地热井开采的喷射式同轴套管换热器。基于有限体积法建立水平段近井底区三维数值仿真模型,对比分析外进内出型(Outside-in and Inside-out type,OI)、内进外出型(Inside-in and Outside-out type,IO)和喷射式(Jet Inlet,IOI)同轴套管换热器的流场和温度场,揭示了喷射式换热器强化传热机理。结果表明:IOI型换热器内流体的湍动能增加,并形成涡旋,提高了地热开采效率。通过对比采热性能发现,努塞尔数随质量流量增加而增加,IOI型的努塞尔数比其他两者分别高18.33%~32.48%和5.33%~18.84%;摩擦系数随质量流量增加而降低;相同质量流量下,IOI型换热器热增强系数比其他两者分别高9.13%~13.58%和3.61%~10.24%;IOI型的平均采出温度和平均延米换热量始终在三者中最高。研究结果为提高水平地热井同轴套管式换热器开采效率提供理论依据。