Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx...Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.展开更多
The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interfe...The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.展开更多
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the...The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。展开更多
This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model ...This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model to investigate its effect on the pantograph–catenary interaction.The dispersion of the longitudinal deviation is assumed to follow a Gaussian distribution.A power spectrum density represents the vertical deviation in the contact wire.Based on the Monte Carlo method,several geometry deviation samples are generated and included in the catenary model.A lumped mass pantograph with flexible collectors is employed to reproduce the high-frequency behaviours.The stochastic analysis results indicate that the catenary geometry deviation causes a significant dispersion of the pantograph–catenary interaction response.The contact force standard deviations measured by the inspection vehicle are within the scope of the simulation results.A critical cut-off frequency that covers 1/16 of the dropper interval is suggested to fully describe the effect of the catenary geometry deviation on the contact force.The statistical minimum contact force is recommended to be modified according to the tolerant contact loss rate at high frequency.An unpleasant interaction performance of the pantograph–catenary can be expected at the catenary top speed when the random catenary geometry deviation is included.展开更多
The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of th...The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.展开更多
接触线磨耗是综合反映接触网服役性能的重要指标。针对接触线空间布置范围大,磨耗检测精度要求高,人工检测效率低的难题,提出综合运用激光三角和沙姆成像原理,研究构建基于线结构光测量技术的车载接触线磨耗主动视觉检测方法。提出采用...接触线磨耗是综合反映接触网服役性能的重要指标。针对接触线空间布置范围大,磨耗检测精度要求高,人工检测效率低的难题,提出综合运用激光三角和沙姆成像原理,研究构建基于线结构光测量技术的车载接触线磨耗主动视觉检测方法。提出采用高斯-牛顿非线性最小二乘优化方法,对像平面与光平面单应性矩阵、镜头畸变参数进行交叉迭代求解,建立面向接触线磨耗动态检测的大视场、高精度视觉模型及其参数标定方法,解决接触线磨耗检测系统视觉建模及参数标定难题。立足现场实际需求,研制接触线磨耗车载检测装置,分步开展室内静态标定实验和现场动态检测试验。结果表明,实验室标定重投影误差控制在0.083 mm以内,与传统模型相比提高53.1%。接触线磨损宽度、磨损深度及磨损面积动态检测数据与人工静态测量数据相比,RMS误差分别控制在0.119 mm, 0.115 mm, 0.788 mm2以内。展开更多
基金financial supports from the National Natural Science Foundation of China (No.62175242,U20A20217,61975210,and 62305345)China Postdoctoral Science Foundation (2021T140670)。
文摘Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
基金supported by the Science and Technology Research Project of Henan Province (No.222102210087)the Science and Technology Research Project of Henan Province (No.222102220102).
文摘The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains.However,in real-world scenarios,accurate predictions are challenging due to various interferences.This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter(KF).The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments.By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals,it becomes possible to ascertain the aging status of the catenary.To improve prediction accuracy,a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno(T-S)fuzzy neural network(FNN)and KF.In this model,an adaptive training method is introduced,allowing the FNN to use fewer fuzzy rules.The inputs of the model include time,temperature,and historical displacement,while the output is the predicted displacement.Furthermore,the KF is enhanced by modifying its prior state estimate covariance and measurement error covariance.These modifications contribute to more accurate predictions.Lastly,a low-power experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method.The test results demonstrate that the proposed method outperforms the compared method,showcasing its superior performance.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province of China(No.23JRRA842).
文摘The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。
文摘This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model to investigate its effect on the pantograph–catenary interaction.The dispersion of the longitudinal deviation is assumed to follow a Gaussian distribution.A power spectrum density represents the vertical deviation in the contact wire.Based on the Monte Carlo method,several geometry deviation samples are generated and included in the catenary model.A lumped mass pantograph with flexible collectors is employed to reproduce the high-frequency behaviours.The stochastic analysis results indicate that the catenary geometry deviation causes a significant dispersion of the pantograph–catenary interaction response.The contact force standard deviations measured by the inspection vehicle are within the scope of the simulation results.A critical cut-off frequency that covers 1/16 of the dropper interval is suggested to fully describe the effect of the catenary geometry deviation on the contact force.The statistical minimum contact force is recommended to be modified according to the tolerant contact loss rate at high frequency.An unpleasant interaction performance of the pantograph–catenary can be expected at the catenary top speed when the random catenary geometry deviation is included.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51979129)。
文摘The present study establishes a simple numerical model for the coupled response of a steel catenary riser(SCR) subjected to coplanar vessel motion and vortex-induced vibration(VIV). Owing to the large deflection of the SCR, the geometric nonlinearity is considered in this model. The hydrodynamic force comprises the excitation force and hydrodynamic damping, where the excitation force that only exists when the non-dimensional frequency is located in the lock-in range, is associated with the VIV. The hydrodynamic force model is validated based on the published VIV test data.As for the seabed resistance at the touchdown zone(TDZ), integrated with an initial seabed trench, the hysteretic feature is modeled. Based on the model, the study emphasizes on the coupled response characteristics near the touchdown point(TDP) induced by coplanar vessel heave and VIV, and analyzes the sensitivity of the coupled response to the heaving amplitude and frequency. It is found that with the increase of the heave amplitude and frequency, the VIV can be obviously mitigated, but the heave-related response in the coupled analysis seems to be close to that in the heave-only simulation. Finally, the fatigue damage near TDP is parametrically investigated based on the separate analysis and the coupled analysis. The results demonstrate that the coupled effect plays a significant role in the fatigue assessment near TDP. Besides, the proportion of the coupled effect accounting for the total fatigue damage decreases with the increasing seabed stiffness, while increases with the increasing seabed trench depth.
文摘接触线磨耗是综合反映接触网服役性能的重要指标。针对接触线空间布置范围大,磨耗检测精度要求高,人工检测效率低的难题,提出综合运用激光三角和沙姆成像原理,研究构建基于线结构光测量技术的车载接触线磨耗主动视觉检测方法。提出采用高斯-牛顿非线性最小二乘优化方法,对像平面与光平面单应性矩阵、镜头畸变参数进行交叉迭代求解,建立面向接触线磨耗动态检测的大视场、高精度视觉模型及其参数标定方法,解决接触线磨耗检测系统视觉建模及参数标定难题。立足现场实际需求,研制接触线磨耗车载检测装置,分步开展室内静态标定实验和现场动态检测试验。结果表明,实验室标定重投影误差控制在0.083 mm以内,与传统模型相比提高53.1%。接触线磨损宽度、磨损深度及磨损面积动态检测数据与人工静态测量数据相比,RMS误差分别控制在0.119 mm, 0.115 mm, 0.788 mm2以内。