A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o...A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.展开更多
通过高分子反应法的新型合成路线,用SO3磺化的方法,对苯乙烯马来酸酐共聚物进行磺化,引入磺酸基团,通过磺酸基团的自催化作用,在马来酸酐基团上进行酯化接枝,合成出带有聚氧乙烯醚侧链的聚羧酸型高效减水剂。减水剂在低掺量下即有很好...通过高分子反应法的新型合成路线,用SO3磺化的方法,对苯乙烯马来酸酐共聚物进行磺化,引入磺酸基团,通过磺酸基团的自催化作用,在马来酸酐基团上进行酯化接枝,合成出带有聚氧乙烯醚侧链的聚羧酸型高效减水剂。减水剂在低掺量下即有很好的减水效果,在掺量为0.6%水泥质量时,混凝土减水率可达36%以上,3 d、28 d抗压强度分别为207%、171%,90 m in内混凝土坍落度基本无损失。展开更多
基金Funded by the Fujian Education Department(Nos.JA11329,JA12412)Quanzhou(Fujian)Technology Research and Development Program(Nos.2013Z158,2013Z47,2010G7)
文摘A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers.
文摘通过高分子反应法的新型合成路线,用SO3磺化的方法,对苯乙烯马来酸酐共聚物进行磺化,引入磺酸基团,通过磺酸基团的自催化作用,在马来酸酐基团上进行酯化接枝,合成出带有聚氧乙烯醚侧链的聚羧酸型高效减水剂。减水剂在低掺量下即有很好的减水效果,在掺量为0.6%水泥质量时,混凝土减水率可达36%以上,3 d、28 d抗压强度分别为207%、171%,90 m in内混凝土坍落度基本无损失。