For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进...频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进一步加重导向矢量的失配,极大地影响检测器的检测性能。此外,目标速度过快也会对FDA-MIMO雷达的目标检测性能产生影响。速度带来的影响具体表现在两个方面:一方面会导致目标的距离走动,从而导致不同慢时间的回波包络不能对齐,无法相干积累;二是频率增量引起的多普勒扩展,使得不同发射通道的多普勒频率不一样,这会进一步影响检测性能。针对上述问题,本文针对运动目标情况下的目标检测问题进行研究,为了解决目标运动带来的距离徙动和多普勒扩展效应,引入Keystone变换进行校正。此外,为了提升阵列失配条件下的目标检测性能,本文引入子空间模型,提出了距离角度失配情况下的子空间构建方法,并基于广义似然比检验(Generalized Likelihood Ratio Test,GLRT)准则推导了FDA-MIMO雷达在距离和角度失配条件下的自适应检测器。仿真结果表明:在高斯白噪声背景下,所提算法可以校正运动目标在速度较快情况下导致的距离徙动和多普勒扩展效应,且在阵列距离和角度失配条件下的检测性能优于传统的GLRT检测器。此外本文所提Keystone-空域处理检测器与Keystone-全空时处理检测器的性能接近,且计算复杂度更低。展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t...The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
文摘频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进一步加重导向矢量的失配,极大地影响检测器的检测性能。此外,目标速度过快也会对FDA-MIMO雷达的目标检测性能产生影响。速度带来的影响具体表现在两个方面:一方面会导致目标的距离走动,从而导致不同慢时间的回波包络不能对齐,无法相干积累;二是频率增量引起的多普勒扩展,使得不同发射通道的多普勒频率不一样,这会进一步影响检测性能。针对上述问题,本文针对运动目标情况下的目标检测问题进行研究,为了解决目标运动带来的距离徙动和多普勒扩展效应,引入Keystone变换进行校正。此外,为了提升阵列失配条件下的目标检测性能,本文引入子空间模型,提出了距离角度失配情况下的子空间构建方法,并基于广义似然比检验(Generalized Likelihood Ratio Test,GLRT)准则推导了FDA-MIMO雷达在距离和角度失配条件下的自适应检测器。仿真结果表明:在高斯白噪声背景下,所提算法可以校正运动目标在速度较快情况下导致的距离徙动和多普勒扩展效应,且在阵列距离和角度失配条件下的检测性能优于传统的GLRT检测器。此外本文所提Keystone-空域处理检测器与Keystone-全空时处理检测器的性能接近,且计算复杂度更低。
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
基金National Natural Science Foundation of China(Grant No.62001506)to provide fund for conducting experiments。
文摘The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case.