Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it...Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.展开更多
To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent proces...To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.展开更多
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
文摘Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.
基金Supported by the National Natural Science Foundation of China (No.60302009).
文摘To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.