期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst
1
作者 Yunmeng Li Yinze Zuo +7 位作者 Xiang Li Yongzheng Zhang Cheng Ma Xiaomin Cheng Jian Wang Jitong Wang Hongzhen Lin Licheng Ling 《Nano Research》 SCIE EI CSCD 2024年第8期7153-7162,共10页
Lithium-sulfur(Li-S)batteries mainly rely on the reversible electrochemical reaction of between lithium ions(Li^(+))and sulfur species to achieve energy storage and conversion,therefore,increasing the number of free L... Lithium-sulfur(Li-S)batteries mainly rely on the reversible electrochemical reaction of between lithium ions(Li^(+))and sulfur species to achieve energy storage and conversion,therefore,increasing the number of free Li^(+)and improving the Li^(+)diffusion kinetics will effectively enhance the cell performance.Here,Mo-based MXene heterostructure(MoS_(2)@Mo_(2)C)was developed by partial vulcanization of Mo_(2)C MXene,in which the introduction of similar valence S into Mo-based MXene(Mo_(2)C)can create an electron delocalization effect.Through theoretical simulations and electrochemical characterisation,it is demonstrated that the MoS_(2)@Mo_(2)C heterojunction can effectively promote ion desolvation,increase the amount of free Li^(+),and accelerate Li^(+)transport for more efficient polysulfide conversion.In addition,the MoS_(2)@Mo_(2)C material is also capable of accelerating the oxidation and reduction of polysulfides through its sufficient defects and vacancies to further enhance the catalytic efficiency.Consequently,the Li-S battery with the designed MoS_(2)@Mo_(2)C electrocatalyst performed for 500 cycles at 1 C and still maintained the ideal capacity(664.7 mAh·g^(−1)),and excellent rate performance(567.6 mAh·g^(−1)at 5 C).Under the extreme conditions of high loading,the cell maintained an excellent capacity of 775.6 mAh·g^(−1)after 100 cycles.It also retained 838.4 mAh·g^(−1)for 70 cycles at a low temperature of 0℃,and demonstrated a low decay rate(0.063%).These results indicate that the delocalized electrons effectively accelerate the catalytic conversion of lithium polysulfide,which is more practical for enhancing the behaviour of Li-S batteries. 展开更多
关键词 delocalized electron lithium sulfur batteries MXene-based heterostructures catalytic desolvation multi-catalytic sites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部